TY - JOUR
T1 - Atg14 protects the intestinal epithelium from TNF-triggered villus atrophy
AU - Jung, Haerin
AU - Leal-Ekman, J. Steven
AU - Lu, Qiuhe
AU - Stappenbeck, Thaddeus S.
N1 - Funding Information:
This work was supported by the Crohn’s & Colitis Foundation; Kenneth Rainin Foundation; National Heart, Lung, and Blood Institute [T32 HL007317]; National Institutes of Health [P30DK052574]. We thank all lab members for discussion and helpful comments especially Chin-Wen Lai and Aaron Ver Heul for support with critical experiments and Darren Kreamalmeyer for animal care and breeding. The Washington University Digestive Disease Research Center (Morphology Core) was funded by NIH P30DK052574. J.S.L-E. was funded by NIH/NHLBI T32 HL007317.
Publisher Copyright:
© 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2019/11/2
Y1 - 2019/11/2
N2 - Regulation of intestinal epithelial turnover is a key component of villus maintenance in the intestine. The balance of cell turnover can be perturbed by various extrinsic factors including the cytokine TNF, a cell signaling protein that mediates both proliferative and cytotoxic outcomes. Under conditions of infection and damage, defects in autophagy are associated with TNF-mediated cell death and tissue damage in the intestinal epithelium. However, a direct role of autophagy within the context of enterocyte cell death during homeostasis is lacking. Here, we generated mice lacking ATG14 (autophagy related 14) within the intestinal epithelium [Atg14f/f Vil1-Cre (VC)+]. These mice developed spontaneous villus loss and intestinal epithelial cell death within the small intestine. Based on marker studies, the increased cell death in these mice was due to apoptosis. Atg14f/f VC+ intestinal epithelial cells demonstrated sensitivity to TNF-triggered apoptosis. Correspondingly, both TNF blocking antibody and genetic deletion of Tnfrsf1a/Tnfr1 rescued villus loss and cell death phenotype in Atg14f/f VC+ mice. Lastly, we identified a similar pattern of spontaneous villus atrophy and cell death when Rb1cc1/Fip200 was conditionally deleted from the intestinal epithelium (Rb1cc1f/f VC+). Overall, these findings are consistent with the hypothesis that factors that control entry into the autophagy pathway are also required during homeostasis to prevent TNF triggered death in the intestine. Abbreviations: ANOVA: analysis of variance; Atg14: autophagy related 14; Atg16l1: autophagy related 16-like 1 (S. cerevisiae); Atg5: autophagy related 5; cCASP3: cleaved CASP3/caspase-3; cCASP8: cleaved CASP8/caspase-8; CHX: cycloheximide; EdU: 5-ethynyl-2´-deoxyuridine thymidine; f/f: flox/flox; H&E: hematoxylin and eosin; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Nec-1: necrostatin-1; Rb1cc1/Fip200: RB1-inducible coiled-coil 1; Ripk1: receptor (TNFRSF)-interacting serine-threonine kinase 1; Ripk3: receptor (TNFRSF)-interacting serine-threonine kinase 3; Tnfrsf1a/Tnfr1: tumor necrosis factor receptor superfamily, member 1a; Tnf/ Tnfsf1a: tumor necrosis factor; VC: Vil1/villin 1-Cre.
AB - Regulation of intestinal epithelial turnover is a key component of villus maintenance in the intestine. The balance of cell turnover can be perturbed by various extrinsic factors including the cytokine TNF, a cell signaling protein that mediates both proliferative and cytotoxic outcomes. Under conditions of infection and damage, defects in autophagy are associated with TNF-mediated cell death and tissue damage in the intestinal epithelium. However, a direct role of autophagy within the context of enterocyte cell death during homeostasis is lacking. Here, we generated mice lacking ATG14 (autophagy related 14) within the intestinal epithelium [Atg14f/f Vil1-Cre (VC)+]. These mice developed spontaneous villus loss and intestinal epithelial cell death within the small intestine. Based on marker studies, the increased cell death in these mice was due to apoptosis. Atg14f/f VC+ intestinal epithelial cells demonstrated sensitivity to TNF-triggered apoptosis. Correspondingly, both TNF blocking antibody and genetic deletion of Tnfrsf1a/Tnfr1 rescued villus loss and cell death phenotype in Atg14f/f VC+ mice. Lastly, we identified a similar pattern of spontaneous villus atrophy and cell death when Rb1cc1/Fip200 was conditionally deleted from the intestinal epithelium (Rb1cc1f/f VC+). Overall, these findings are consistent with the hypothesis that factors that control entry into the autophagy pathway are also required during homeostasis to prevent TNF triggered death in the intestine. Abbreviations: ANOVA: analysis of variance; Atg14: autophagy related 14; Atg16l1: autophagy related 16-like 1 (S. cerevisiae); Atg5: autophagy related 5; cCASP3: cleaved CASP3/caspase-3; cCASP8: cleaved CASP8/caspase-8; CHX: cycloheximide; EdU: 5-ethynyl-2´-deoxyuridine thymidine; f/f: flox/flox; H&E: hematoxylin and eosin; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Nec-1: necrostatin-1; Rb1cc1/Fip200: RB1-inducible coiled-coil 1; Ripk1: receptor (TNFRSF)-interacting serine-threonine kinase 1; Ripk3: receptor (TNFRSF)-interacting serine-threonine kinase 3; Tnfrsf1a/Tnfr1: tumor necrosis factor receptor superfamily, member 1a; Tnf/ Tnfsf1a: tumor necrosis factor; VC: Vil1/villin 1-Cre.
KW - Apoptosis
KW - autophagy
KW - cell death
KW - epithelial spheroids
KW - villus loss
UR - http://www.scopus.com/inward/record.url?scp=85063745947&partnerID=8YFLogxK
U2 - 10.1080/15548627.2019.1596495
DO - 10.1080/15548627.2019.1596495
M3 - Article
C2 - 30894050
AN - SCOPUS:85063745947
SN - 1554-8627
VL - 15
SP - 1990
EP - 2001
JO - Autophagy
JF - Autophagy
IS - 11
ER -