Asymptotic Müntz–Szász theorems

Jim Agler, John E. McCarthy

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We define a monomial space to be a subspace of L2([0,1]) that can be approximated by spaces that are spanned by monomial functions. We describe the structure of monomial spaces.

Original languageEnglish
Pages (from-to)301-322
Number of pages22
JournalStudia Mathematica
Volume270
Issue number3
DOIs
StatePublished - 2023

Keywords

  • Beurling’s theorem
  • Hardy operator
  • monomial spaces
  • Müntz spaces

Fingerprint

Dive into the research topics of 'Asymptotic Müntz–Szász theorems'. Together they form a unique fingerprint.

Cite this