Astrocyte-derived transgene GDNF promotes complete and long-term survival of adult facial motoneurons following avulsion and differentially regulates the expression of transcription factors of AP-1 and ATF/CREB families

Alexander Parsadanian, Yanchun Pan, Wen Li, Terence M. Myckatyn, Danielle Brakefield

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Glial-cell-line-derived neurotrophic factor (GDNF) is a potent survival factor for motoneurons (MNs). We have previously demonstrated that overexpression of GDNF in astrocytes of GFAP-GDNF mice promotes long-term survival of neonatal MNs after facial nerve axotomy. In the present study, we investigated whether astrocyte-derived GDNF could also have a neuroprotective effect on adult MNs following facial nerve avulsion. We also examined avulsion- and GDNF-induced changes in the expression pattern of several members of the AP-1 and ATF/CREB families of transcription factors, which are involved in the fate determination of neurons following injury. We demonstrated that GDNF promotes complete rescue of avulsed MNs for at least 4 months post-injury. Transgene GDNF significantly upregulates c-Jun expression in naive MNs, further upregulates injury-induced c-Jun expression in facial MNs, and results in its activation in most surviving MNs. No significant changes were found in c-Fos expression. We found that GDNF has an opposing effect on ATF2 and ATF3 expression. It dramatically downregulates increased levels of ATF3 in response to injury, whereas the expression of ATF2, which is normally reduced after injury, is completely preserved in GFAP-GDNF mice. Our data suggest that maintenance of high levels of ATF2 in injured MNs could be crucial in modulating c-Jun function, and c-Jun/ATF2 signaling could be involved in GDNF-mediated survival of mature MNs.

Original languageEnglish
Pages (from-to)26-37
Number of pages12
JournalExperimental Neurology
Volume200
Issue number1
DOIs
StatePublished - Jul 2006

Keywords

  • Avulsion
  • GDNF
  • Motoneuron
  • Survival
  • Transcription factors
  • Transgenic

Fingerprint

Dive into the research topics of 'Astrocyte-derived transgene GDNF promotes complete and long-term survival of adult facial motoneurons following avulsion and differentially regulates the expression of transcription factors of AP-1 and ATF/CREB families'. Together they form a unique fingerprint.

Cite this