Association of the sindbis virus RNA methyltransferase activity with the nonstructural protein nsP1

Sha Mi, Russell Durbin, Henry V. Huang, Charles M. Rice, Victor Stollar

Research output: Contribution to journalArticlepeer-review

112 Scopus citations

Abstract

SVLM21 is a mutant of Sindbis virus, which in contrast to SVSTD, is able to replicate in Aedes albopictus mosquito cells deprived of methionine. We have obtained evidence that the basis of this low methionine-resistance (LMR) phenotype is the generation of an altered RNA methyltransferase with an increased affinity for S-adenosylmethionine (ado met). We now report that following the substitution of the nucleotide sequence, 126-504, from SVLM21 cDNA for the corresponding sequence of the Toto 1101 plasmid (infectious Sindbis viral RNA can be transcribed from this plasmid) we were able to generate recombinant Sindbis virus (SVMS-65a) with the LMR phenotype. (SVTOTO virus derived from Toto 1101, like SVSTD, lacks the LMR phenotype.) As was the case with SVLM21, SVMS-65a not only possessed the LMR phenotype but also showed an increased sensitivity to Neplanocin A, a potent inhibitor of S-adenosylhomocysteine (ado hcy) hydrolase. Sequencing of the nucleotide 126-504 region from SVLM21 revealed two mutations; these mutations occurred in adjacent codons and lead to two predicted amino acid changes in the SV nsPl protein; at residue 87, from Arg to Leu, and at residue 88 from Ser to Cys. Since the nucleotide sequence 126-504 lies entirely within the gene for nsP1, we conclude that the RNA methyltransferase activity generated by SV is associated with nsPl. We suggest that residues 87 and 88 in nsP1, where the amino acid changes in SVLM21 nsP1 have occurred, are at or near the binding site for ado met; we also suggest that these changes in nsP1 are responsible for the increased affinity of the SVLM21 RNA methyltransferase for ado met and thereby for the LMR phenotype. Alternatively, it is possible that the binding site for ado met is elsewhere on nsP1 or even on another protein, and that the changes at residues 87 and 88 lead to an alteration of the binding site.

Original languageEnglish
Pages (from-to)385-391
Number of pages7
JournalVirology
Volume170
Issue number2
DOIs
StatePublished - Jun 1989

Fingerprint

Dive into the research topics of 'Association of the sindbis virus RNA methyltransferase activity with the nonstructural protein nsP1'. Together they form a unique fingerprint.

Cite this