The receptor for activated C-kinase 1 (RACK1), a highly conserved eukaryotic protein, is known to have many varying biological roles and functions. Previous work has established RACK1 as a ribosomal protein, with defined regions important for ribosome binding in eukaryotic cells. In Plasmodium falciparum, RACK1 has been shown to be required for parasite growth, however, conflicting evidence has been presented about RACK1 ribosome binding and its role in mRNA translation. Given the importance of RACK1 as a regulatory component of mRNA translation and ribosome quality control, the case could be made in parasites that RACK1 either binds or does not bind the ribosome. Here, we used bioinformatics and transcription analyses to further characterize the P. falciparum RACK1 protein. Based on homology modeling and structural analyses, we generated a model of P. falciparum RACK1. We then explored mutant and chimeric human and P. falciparum RACK1 protein binding properties to the human and P. falciparum ribosome. We found that WT, chimeric, and mutant RACK1 exhibit distinct ribosome interactions suggesting different binding characteristics for P. falciparum and human RACK1 proteins. The ribosomal binding of RACK1 variants in human and parasite cells shown here demonstrates that although RACK1 proteins have highly conserved sequences and structures across species, ribosomal binding is affected by species-specific alterations to this protein. In conclusion, we show that in the case of P. falciparum, contrary to the structural data, RACK1 is found to bind ribosomes and actively translating polysomes in parasite cells.

Original languageEnglish
Article number101954
JournalJournal of Biological Chemistry
Issue number6
StatePublished - Jun 1 2022


Dive into the research topics of 'Association of the receptor for activated C-kinase 1 with ribosomes in Plasmodium falciparum'. Together they form a unique fingerprint.

Cite this