TY - GEN
T1 - Assisting Clinical Decisions for Scarcely Available Treatment via Disentangled Latent Representation
AU - Xue, Bing
AU - Said, Ahmed Sameh
AU - Xu, Ziqi
AU - Liu, Hanyang
AU - Shah, Neel
AU - Yang, Hanqing
AU - Payne, Philip
AU - Lu, Chenyang
N1 - Publisher Copyright:
© 2023 ACM.
PY - 2023/8/6
Y1 - 2023/8/6
N2 - Extracorporeal membrane oxygenation (ECMO) is an essential life-supporting modality for COVID-19 patients who are refractory to conventional therapies. However, the proper treatment decision has been the subject of significant debate and it remains controversial about who benefits from this scarcely available and technically complex treatment option. To support clinical decisions, it is a critical need to predict the treatment need and the potential treatment and no-treatment responses. Targeting this clinical challenge, we propose Treatment Variational AutoEncoder (TVAE), a novel approach for individualized treatment analysis. TVAE is specifically designed to address the modeling challenges like ECMO with strong treatment selection bias and scarce treatment cases. TVAE conceptualizes the treatment decision as a multi-scale problem. We model a patient's potential treatment assignment and the factual and counterfactual outcomes as part of their intrinsic characteristics that can be represented by a deep latent variable model. The factual and counterfactual prediction errors are alleviated via a reconstruction regularization scheme together with semi-supervision, and the selection bias and the scarcity of treatment cases are mitigated by the disentangled and distribution-matched latent space and the label-balancing generative strategy. We evaluate TVAE on two real-world COVID-19 datasets: an international dataset collected from 1651 hospitals across 63 countries, and a institutional dataset collected from 15 hospitals. The results show that TVAE outperforms state-of-the-art treatment effect models in predicting both the propensity scores and factual outcomes on heterogeneous COVID-19 datasets. Additional experiments also show TVAE outperforms the best existing models in individual treatment effect estimation on the synthesized IHDP benchmark dataset.
AB - Extracorporeal membrane oxygenation (ECMO) is an essential life-supporting modality for COVID-19 patients who are refractory to conventional therapies. However, the proper treatment decision has been the subject of significant debate and it remains controversial about who benefits from this scarcely available and technically complex treatment option. To support clinical decisions, it is a critical need to predict the treatment need and the potential treatment and no-treatment responses. Targeting this clinical challenge, we propose Treatment Variational AutoEncoder (TVAE), a novel approach for individualized treatment analysis. TVAE is specifically designed to address the modeling challenges like ECMO with strong treatment selection bias and scarce treatment cases. TVAE conceptualizes the treatment decision as a multi-scale problem. We model a patient's potential treatment assignment and the factual and counterfactual outcomes as part of their intrinsic characteristics that can be represented by a deep latent variable model. The factual and counterfactual prediction errors are alleviated via a reconstruction regularization scheme together with semi-supervision, and the selection bias and the scarcity of treatment cases are mitigated by the disentangled and distribution-matched latent space and the label-balancing generative strategy. We evaluate TVAE on two real-world COVID-19 datasets: an international dataset collected from 1651 hospitals across 63 countries, and a institutional dataset collected from 15 hospitals. The results show that TVAE outperforms state-of-the-art treatment effect models in predicting both the propensity scores and factual outcomes on heterogeneous COVID-19 datasets. Additional experiments also show TVAE outperforms the best existing models in individual treatment effect estimation on the synthesized IHDP benchmark dataset.
KW - causal inference
KW - covid analysis
KW - deep latent variable models
KW - generative ai
KW - machine learning for healthcare
KW - representation learning
KW - semi-supervised learning
KW - treatment effect estimation
KW - variational autoencoder
UR - http://www.scopus.com/inward/record.url?scp=85171363220&partnerID=8YFLogxK
U2 - 10.1145/3580305.3599774
DO - 10.1145/3580305.3599774
M3 - Conference contribution
AN - SCOPUS:85171363220
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 5360
EP - 5371
BT - KDD 2023 - Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PB - Association for Computing Machinery
T2 - 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023
Y2 - 6 August 2023 through 10 August 2023
ER -