TY - JOUR
T1 - Assessment of technical and biological parameters of volumetric quantitative computed tomography of the foot
T2 - A phantom study
AU - Smith, K. E.
AU - Whiting, B. R.
AU - Reiker, G. G.
AU - Commean, P. K.
AU - Sinacore, D. R.
AU - Prior, F. W.
N1 - Funding Information:
Funding for this project was provided by the National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Diseases (1 R21 DK079457-03). We thank Tim Street, CT technologist within the Clinical Center for Imaging Research (CCIR) for his help with CT image acquisition for this project. The CCIR is supported in part by the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) (1 UL1 RR024992-01). We also thank Dr. Charles Hildebolt for the statistical assistance.
PY - 2012/7
Y1 - 2012/7
N2 - Summary Few studies exist for bone densitometry of the whole foot. A phantom study demonstrated the sources of error and necessary controls for accurate quantitative computed tomography of the foot. A loss in bone mineral density (BMD) in the small foot bones may be an early indicator of diabetic foot complications. Introduction Volumetric quantitative computed tomography (vQCT) facilitates the assessment of pedal bone osteopenia, which, in the presence of peripheral neuropathy, may well be an early sign of diabetic foot deformity. To date, sources and magnitudes of error in foot vQCT measurements have not been reported. Methods Foot phantoms were scanned using a 64-slice CT scanner. Energy (in kilovoltage peak), table height, phantom size and orientation, location of "bone" inserts, insert material, location of calibration phantom, and reconstruction kernel were systematically varied during scan acquisition. Results Energy (in kilovoltage peak) and distance from the isocenter (table height) resulted in relative attenuation changes from -5% to 22% and -5% to 0%, respectively, and average BMD changes from -0.9% to 0.0% and -1.1% to 0.3%, respectively, compared to a baseline 120-kVp scan performed at the isocenter. BMD compared to manufacturerspecified values ranged, on average, from -2.2% to 0.9%. Phantom size and location of bone-equivalent material inserts resulted in relative attenuation changes of -1.2% to 1.4% compared to the medium-sized phantom. Conclusion This study demonstrated that variations in kilovoltage peak and table height can be controlled using a calibration phantom scanned at the same energy and height as a foot phantom; however, error due to soft tissue thickness and location of bones within a foot cannot be controlled using a calibration phantom alone.
AB - Summary Few studies exist for bone densitometry of the whole foot. A phantom study demonstrated the sources of error and necessary controls for accurate quantitative computed tomography of the foot. A loss in bone mineral density (BMD) in the small foot bones may be an early indicator of diabetic foot complications. Introduction Volumetric quantitative computed tomography (vQCT) facilitates the assessment of pedal bone osteopenia, which, in the presence of peripheral neuropathy, may well be an early sign of diabetic foot deformity. To date, sources and magnitudes of error in foot vQCT measurements have not been reported. Methods Foot phantoms were scanned using a 64-slice CT scanner. Energy (in kilovoltage peak), table height, phantom size and orientation, location of "bone" inserts, insert material, location of calibration phantom, and reconstruction kernel were systematically varied during scan acquisition. Results Energy (in kilovoltage peak) and distance from the isocenter (table height) resulted in relative attenuation changes from -5% to 22% and -5% to 0%, respectively, and average BMD changes from -0.9% to 0.0% and -1.1% to 0.3%, respectively, compared to a baseline 120-kVp scan performed at the isocenter. BMD compared to manufacturerspecified values ranged, on average, from -2.2% to 0.9%. Phantom size and location of bone-equivalent material inserts resulted in relative attenuation changes of -1.2% to 1.4% compared to the medium-sized phantom. Conclusion This study demonstrated that variations in kilovoltage peak and table height can be controlled using a calibration phantom scanned at the same energy and height as a foot phantom; however, error due to soft tissue thickness and location of bones within a foot cannot be controlled using a calibration phantom alone.
KW - Bone mineral density
KW - Diabetes
KW - Foot
KW - Neuropathic Charcot's arthropathy computed tomography
KW - Phantom
KW - Quantitative
UR - http://www.scopus.com/inward/record.url?scp=84863559781&partnerID=8YFLogxK
U2 - 10.1007/s00198-011-1851-3
DO - 10.1007/s00198-011-1851-3
M3 - Article
C2 - 22147208
AN - SCOPUS:84863559781
SN - 0937-941X
VL - 23
SP - 1977
EP - 1985
JO - Osteoporosis International
JF - Osteoporosis International
IS - 7
ER -