TY - JOUR
T1 - Assessment of postpreservation rat lung function using a new model for extended venous reperfusion
AU - DeCampos, K. N.
AU - Waddell, T. K.
AU - Slutsky, A. S.
AU - Post, M.
AU - Patterson, G. A.
PY - 1993
Y1 - 1993
N2 - Understanding the physiological significance of biochemical events after lung preservation in rats has been hampered by the lack of a suitable model for physiological assessment. We have developed an ex vivo paracorporeal rat lung perfusion model that permits hemodynamic and gas exchange evaluation of lung function. After anesthesia and heparinization, the heart-lung block was removed and the left lung was reperfused for 1 h at a constant flow of 4 ml/min with homologous venous blood drained from the inferior vena cava of the paracorporeal (host) rat. The lung effluent was returned at the same flow rate to the host distal aorta. The model was validated by the assessment of lung function after room temperature ischemia. Animals were allocated into three groups (n = 6) according to the ischemic interval (group 1, 20 min; group 2, 3 h; group 3, 4 h). In groups 1 and 2 PO2, PCO2, mean airway pressure, and pulmonary arterial pressure were within the normal ranges and stable throughout the experiment. In contrast, lungs in group 3 demonstrated higher pulmonary arterial pressure and lower blood effluent PO2 than were found in either group 1 or 2. A significant weight gain during reperfusion was observed only in group 3 (4.23 ± 0.9 g; P < 0.002). For each lung, the final blood effluent PO2 correlated with the weight gain (R2 = 0.81; P < 0.0001). Our results indicate that this model can be used reliably to detect lung dysfunction after ischemic injury.
AB - Understanding the physiological significance of biochemical events after lung preservation in rats has been hampered by the lack of a suitable model for physiological assessment. We have developed an ex vivo paracorporeal rat lung perfusion model that permits hemodynamic and gas exchange evaluation of lung function. After anesthesia and heparinization, the heart-lung block was removed and the left lung was reperfused for 1 h at a constant flow of 4 ml/min with homologous venous blood drained from the inferior vena cava of the paracorporeal (host) rat. The lung effluent was returned at the same flow rate to the host distal aorta. The model was validated by the assessment of lung function after room temperature ischemia. Animals were allocated into three groups (n = 6) according to the ischemic interval (group 1, 20 min; group 2, 3 h; group 3, 4 h). In groups 1 and 2 PO2, PCO2, mean airway pressure, and pulmonary arterial pressure were within the normal ranges and stable throughout the experiment. In contrast, lungs in group 3 demonstrated higher pulmonary arterial pressure and lower blood effluent PO2 than were found in either group 1 or 2. A significant weight gain during reperfusion was observed only in group 3 (4.23 ± 0.9 g; P < 0.002). For each lung, the final blood effluent PO2 correlated with the weight gain (R2 = 0.81; P < 0.0001). Our results indicate that this model can be used reliably to detect lung dysfunction after ischemic injury.
KW - ex vivo lung reperfusion
KW - gas exchange function
KW - ischemic lung injury
KW - lung preservation
KW - rat paracorporeal model
UR - http://www.scopus.com/inward/record.url?scp=0027493853&partnerID=8YFLogxK
U2 - 10.1152/jappl.1993.75.4.1890
DO - 10.1152/jappl.1993.75.4.1890
M3 - Article
C2 - 8282647
AN - SCOPUS:0027493853
SN - 8750-7587
VL - 75
SP - 1890
EP - 1896
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 4
ER -