Assessing tumor hypoxia by positron emission tomography with Cu-ATSM

J. P. Holland, J. S. Lewis, F. Dehdashti

Research output: Contribution to journalReview articlepeer-review

80 Scopus citations

Abstract

For the last several decades, hypoxia has been recognized to be one of the key factors in tumor aggression and an important impediment to local and distant control of malignant tumors. In addition, hypoxia is a major cause of failure of both radiation therapy and chemotherapy. It has been shown that hypoxia is an independent negative prognostic factor for patient outcome in various solid tumors. Clinical studies using polarographic oxygen electrodes, as a tool for measuring hypoxia, were the first to demonstrate the presence of hypoxia in human tumors and its association with poor prognosis. However, this method is invasive and has technical limitations that prevent its routine clinical use. Over the years, imaging as a noninvasive method has attracted a lot of attention and several radiotracers have been developed for noninvasive evaluation of hypoxia. One of the most promising radiotracers is the copper(II) complex of diacetyl-2,3-bis(N4-methyl-3-thiosemicarbazonato) ligand (Cu-ATSM) for imaging with positron emission tomography. In this review, the preclinical evaluation of Cu-ATSM as well as its clinical value in several solid tumors will be discussed.

Original languageEnglish
Pages (from-to)193-200
Number of pages8
JournalQuarterly Journal of Nuclear Medicine and Molecular Imaging
Volume53
Issue number2
StatePublished - Apr 2009

Keywords

  • Neoplasms
  • Radionuclide imaging
  • Tomography, emission computed

Fingerprint

Dive into the research topics of 'Assessing tumor hypoxia by positron emission tomography with Cu-ATSM'. Together they form a unique fingerprint.

Cite this