TY - JOUR
T1 - Asparagine-linked oligosaccharides protect Lamp-1 and Lamp-2 from intracellular proteolysis
AU - Kundra, Robin
AU - Kornfeld, Stuart
PY - 1999/10/22
Y1 - 1999/10/22
N2 - Lysosomes contain several integral membrane proteins (termed Lamps and Limps) that are extensively glycosylated with asparagine-linked oligosaccharides. It has been postulated that these glycans protect the underlying polypeptides from the proteolytic environment of the lysosome. Previous attempts to test this hypothesis have been inconclusive because they utilized approaches that prevent initial glycosylation and thereby impair protein folding. We have used endoglycosidase H to remove the Asn-linked glycans from fully folded lysosomal membrane proteins in living cells. Deglycosylation of Lamp-1 and Lamp-2 resulted in their rapid degradation, whereas Limp-2 was relatively stable in the lysosome in the absence of high mannose Asn-linked oligosaccharides. Depletion of Lamp-1 and Lamp-2 had no measurable effect on endosomal/lysosomal pH, osmotic stability, or density, and cell viability was maintained. Transport of endocytosed material to dense lysosomes was delayed in endoglycosidase H treated cells, but the rate of degradation of internalized bovine serum albumin was unchanged. These data provide direct evidence that Asn-linked oligosaccharides protect a subset of lysosomal membrane proteins from proteolytic digestion in intact cells.
AB - Lysosomes contain several integral membrane proteins (termed Lamps and Limps) that are extensively glycosylated with asparagine-linked oligosaccharides. It has been postulated that these glycans protect the underlying polypeptides from the proteolytic environment of the lysosome. Previous attempts to test this hypothesis have been inconclusive because they utilized approaches that prevent initial glycosylation and thereby impair protein folding. We have used endoglycosidase H to remove the Asn-linked glycans from fully folded lysosomal membrane proteins in living cells. Deglycosylation of Lamp-1 and Lamp-2 resulted in their rapid degradation, whereas Limp-2 was relatively stable in the lysosome in the absence of high mannose Asn-linked oligosaccharides. Depletion of Lamp-1 and Lamp-2 had no measurable effect on endosomal/lysosomal pH, osmotic stability, or density, and cell viability was maintained. Transport of endocytosed material to dense lysosomes was delayed in endoglycosidase H treated cells, but the rate of degradation of internalized bovine serum albumin was unchanged. These data provide direct evidence that Asn-linked oligosaccharides protect a subset of lysosomal membrane proteins from proteolytic digestion in intact cells.
UR - http://www.scopus.com/inward/record.url?scp=0032742816&partnerID=8YFLogxK
U2 - 10.1074/jbc.274.43.31039
DO - 10.1074/jbc.274.43.31039
M3 - Article
C2 - 10521503
AN - SCOPUS:0032742816
SN - 0021-9258
VL - 274
SP - 31039
EP - 31046
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 43
ER -