TY - GEN
T1 - Artificial tissue bioreactor (ATB) for biological and imaging applications
AU - Whitehead, Timothy D.
AU - Nemanich, Samuel T.
AU - Shoghi, Kooresh I.
PY - 2012
Y1 - 2012
N2 - Three-dimensional (3D) culture systems are increasingly applied to study tissue biology. In this work, we report on the development of an artificial tissue bioreactor (ATB) designed to simulate the 3D structure and microenvironment of tissues in vivo, with multiple avenues of sampling, including the tissue chamber, for downstream analysis. Additionally, the ATB is integrated with the microPET Focus F220 for in-vivo imaging applications. As a proof-of-concept, we characterized the effects of lipids on glucose utilization using HepG2 cells. ATB studies were performed pre- and post- therapeutic intervention with the PPAR-γ agonist pioglitazone. In parallel, Glucose Tolerance Test (GTT) is performed on media samples to assess glucose uptake by cells as a measures of insulin signaling sensitivity. Fatty acid uptake in the ATB cell chamber is measured using [11C]Palmitate with microPET imaging. Overall, the ATB will facilitate the use of existing and novel radiopharmaceuticals in discovery of validating and translating insights derived from ATB studies to pre-clinical animal studies, to clinical evaluation.
AB - Three-dimensional (3D) culture systems are increasingly applied to study tissue biology. In this work, we report on the development of an artificial tissue bioreactor (ATB) designed to simulate the 3D structure and microenvironment of tissues in vivo, with multiple avenues of sampling, including the tissue chamber, for downstream analysis. Additionally, the ATB is integrated with the microPET Focus F220 for in-vivo imaging applications. As a proof-of-concept, we characterized the effects of lipids on glucose utilization using HepG2 cells. ATB studies were performed pre- and post- therapeutic intervention with the PPAR-γ agonist pioglitazone. In parallel, Glucose Tolerance Test (GTT) is performed on media samples to assess glucose uptake by cells as a measures of insulin signaling sensitivity. Fatty acid uptake in the ATB cell chamber is measured using [11C]Palmitate with microPET imaging. Overall, the ATB will facilitate the use of existing and novel radiopharmaceuticals in discovery of validating and translating insights derived from ATB studies to pre-clinical animal studies, to clinical evaluation.
UR - http://www.scopus.com/inward/record.url?scp=84870769238&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2012.6346452
DO - 10.1109/EMBC.2012.6346452
M3 - Conference contribution
C2 - 23366413
AN - SCOPUS:84870769238
SN - 9781424441198
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 2420
EP - 2423
BT - 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2012
T2 - 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012
Y2 - 28 August 2012 through 1 September 2012
ER -