Arterial Stiffening Provides Sufficient Explanation for Primary Hypertension

Klas H. Pettersen, Scott M. Bugenhagen, Javaid Nauman, Daniel A. Beard, Stig W. Omholt

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


Hypertension is one of the most common age-related chronic disorders, and by predisposing individuals for heart failure, stroke, and kidney disease, it is a major source of morbidity and mortality. Its etiology remains enigmatic despite intense research efforts over many decades. By use of empirically well-constrained computer models describing the coupled function of the baroreceptor reflex and mechanics of the circulatory system, we demonstrate quantitatively that arterial stiffening seems sufficient to explain age-related emergence of hypertension. Specifically, the empirically observed chronic changes in pulse pressure with age and the impaired capacity of hypertensive individuals to regulate short-term changes in blood pressure arise as emergent properties of the integrated system. The results are consistent with available experimental data from chemical and surgical manipulation of the cardio-vascular system. In contrast to widely held opinions, the results suggest that primary hypertension can be attributed to a mechanogenic etiology without challenging current conceptions of renal and sympathetic nervous system function.

Original languageEnglish
Article numbere1003634
JournalPLoS computational biology
Issue number5
StatePublished - May 2014


Dive into the research topics of 'Arterial Stiffening Provides Sufficient Explanation for Primary Hypertension'. Together they form a unique fingerprint.

Cite this