TY - GEN
T1 - Application of Wray-Agarwal Turbulence Model for Predicting Flow past NACA 0012, 0015, and 0018 Airfoils
AU - Ryan-Simmons, Dean M.
AU - Agarwal, Ramesh K.
N1 - Publisher Copyright:
© 2022, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Assessing model accuracy is essential to identify areas of improvement in various turbulence models. Flow past several symmetric NACA airfoils, namely NACA 0012, NACA 0015 and NACA 0018 are standard test cases for validating and evaluating turbulence models’ accuracy since the experimental data is available for these airfoils. Available wind tunnel data allows for testing turbulence models’ capability to predict lift, drag, and pressure distributions for angles of attack ranging from-4 to 16 degrees at high Reynolds numbers. In this study, two turbulence models are compared to experimental data for the NACA 0012, 0015, and 0018 airfoils. The two turbulence models are the well-known one equation Spalart-Allmaras (SA) and newly developed Wray-Agarwal (WA) model. Numerical results show that both turbulence models are capable of accurately predicting lift and pressure coefficients but generally over predict drag. However, the WA model exhibits higher accuracy in predicting lift at high angles of attack for two of the airfoils and peak pressure for NACA 0012.
AB - Assessing model accuracy is essential to identify areas of improvement in various turbulence models. Flow past several symmetric NACA airfoils, namely NACA 0012, NACA 0015 and NACA 0018 are standard test cases for validating and evaluating turbulence models’ accuracy since the experimental data is available for these airfoils. Available wind tunnel data allows for testing turbulence models’ capability to predict lift, drag, and pressure distributions for angles of attack ranging from-4 to 16 degrees at high Reynolds numbers. In this study, two turbulence models are compared to experimental data for the NACA 0012, 0015, and 0018 airfoils. The two turbulence models are the well-known one equation Spalart-Allmaras (SA) and newly developed Wray-Agarwal (WA) model. Numerical results show that both turbulence models are capable of accurately predicting lift and pressure coefficients but generally over predict drag. However, the WA model exhibits higher accuracy in predicting lift at high angles of attack for two of the airfoils and peak pressure for NACA 0012.
UR - http://www.scopus.com/inward/record.url?scp=85135371305&partnerID=8YFLogxK
U2 - 10.2514/6.2022-3411
DO - 10.2514/6.2022-3411
M3 - Conference contribution
AN - SCOPUS:85135371305
SN - 9781624106354
T3 - AIAA AVIATION 2022 Forum
BT - AIAA AVIATION 2022 Forum
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA AVIATION 2022 Forum
Y2 - 27 June 2022 through 1 July 2022
ER -