Application of Wray-Agarwal Turbulence Model for Predicting Flow past NACA 0012, 0015, and 0018 Airfoils

Dean M. Ryan-Simmons, Ramesh K. Agarwal

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


Assessing model accuracy is essential to identify areas of improvement in various turbulence models. Flow past several symmetric NACA airfoils, namely NACA 0012, NACA 0015 and NACA 0018 are standard test cases for validating and evaluating turbulence models’ accuracy since the experimental data is available for these airfoils. Available wind tunnel data allows for testing turbulence models’ capability to predict lift, drag, and pressure distributions for angles of attack ranging from-4 to 16 degrees at high Reynolds numbers. In this study, two turbulence models are compared to experimental data for the NACA 0012, 0015, and 0018 airfoils. The two turbulence models are the well-known one equation Spalart-Allmaras (SA) and newly developed Wray-Agarwal (WA) model. Numerical results show that both turbulence models are capable of accurately predicting lift and pressure coefficients but generally over predict drag. However, the WA model exhibits higher accuracy in predicting lift at high angles of attack for two of the airfoils and peak pressure for NACA 0012.

Original languageEnglish
Title of host publicationAIAA AVIATION 2022 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624106354
StatePublished - 2022
EventAIAA AVIATION 2022 Forum - Chicago, United States
Duration: Jun 27 2022Jul 1 2022

Publication series

NameAIAA AVIATION 2022 Forum


ConferenceAIAA AVIATION 2022 Forum
Country/TerritoryUnited States


Dive into the research topics of 'Application of Wray-Agarwal Turbulence Model for Predicting Flow past NACA 0012, 0015, and 0018 Airfoils'. Together they form a unique fingerprint.

Cite this