TY - JOUR
T1 - Anthrax toxins inhibit neutrophil signaling pathways in brain endothelium and contribute to the pathogenesis of meningitis
AU - van Sorge, Nina M.
AU - Ebrahimi, Celia M.
AU - McGillivray, Shauna M.
AU - Quach, Darin
AU - Sabet, Mojgan
AU - Guiney, Donald G.
AU - Doran, Kelly S.
PY - 2008/8/13
Y1 - 2008/8/13
N2 - Background: Anthrax meningitis is the main neurological complication of systemic infection with Bacillus anthracis approaching 100% mortality. The presence of bacilli in brain autopsies indicates that vegetative bacteria are able to breach the blood-brain barrier (BBB). The BBB represents not only a physical barrier but has been shown to play an active role in initiating a specific innate immune response that recruits neutrophils to the site of infection. Currently, the basic pathogenic mechanisms by which B. anthracis penetrates the BBB and causes anthrax meningitis are poorly understood. Methodology/Principal Findings: Using an in vitro BBB model, we show for the first time that B. anthracis efficiently invades human brain microvascular endothelial cells (hBMEC), the single cell layer that comprises the BBB. Furthermore, transcriptional profiling of hBMEC during infection with B. anthracis revealed downregulation of 270 (87%) genes, specifically key neutrophil chemoattractants IL-8, CXCL1 (Groα) and CXCL2 (Groβ), thereby strongly contrasting hBMEC responses observed with other meningeal pathogens. Further studies using specific anthrax toxin-mutants, quantitative RT-PCR, ELISA and in vivo assays indicated that anthrax toxins actively suppress chemokine production and neutrophil recruitment during infection, allowing unrestricted proliferation and dissemination of the bacteria. Finally, mice challenged with B. anthracis Sterne, but not the toxin-deficient strain, developed meningitis. Conclusions/Significance: These results suggest a significant role for anthrax toxins in thwarting the BBB innate defense response promoting penetration of bacteria into the central nervous system. Furthermore, establishment of a mouse model for anthrax meningitis will aid in our understanding of disease pathogenesis and development of more effective treatment strategies.
AB - Background: Anthrax meningitis is the main neurological complication of systemic infection with Bacillus anthracis approaching 100% mortality. The presence of bacilli in brain autopsies indicates that vegetative bacteria are able to breach the blood-brain barrier (BBB). The BBB represents not only a physical barrier but has been shown to play an active role in initiating a specific innate immune response that recruits neutrophils to the site of infection. Currently, the basic pathogenic mechanisms by which B. anthracis penetrates the BBB and causes anthrax meningitis are poorly understood. Methodology/Principal Findings: Using an in vitro BBB model, we show for the first time that B. anthracis efficiently invades human brain microvascular endothelial cells (hBMEC), the single cell layer that comprises the BBB. Furthermore, transcriptional profiling of hBMEC during infection with B. anthracis revealed downregulation of 270 (87%) genes, specifically key neutrophil chemoattractants IL-8, CXCL1 (Groα) and CXCL2 (Groβ), thereby strongly contrasting hBMEC responses observed with other meningeal pathogens. Further studies using specific anthrax toxin-mutants, quantitative RT-PCR, ELISA and in vivo assays indicated that anthrax toxins actively suppress chemokine production and neutrophil recruitment during infection, allowing unrestricted proliferation and dissemination of the bacteria. Finally, mice challenged with B. anthracis Sterne, but not the toxin-deficient strain, developed meningitis. Conclusions/Significance: These results suggest a significant role for anthrax toxins in thwarting the BBB innate defense response promoting penetration of bacteria into the central nervous system. Furthermore, establishment of a mouse model for anthrax meningitis will aid in our understanding of disease pathogenesis and development of more effective treatment strategies.
UR - http://www.scopus.com/inward/record.url?scp=51849089723&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0002964
DO - 10.1371/journal.pone.0002964
M3 - Article
C2 - 18698416
AN - SCOPUS:51849089723
SN - 1932-6203
VL - 3
JO - PloS one
JF - PloS one
IS - 8
M1 - e2964
ER -