Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts

Research output: Contribution to journalArticle

492 Scopus citations

Abstract

Functional magnetic resonance imaging (fMRI) techniques, such as echo- planar imaging, can permit rapid, sensitive, whole-brain measurements of local blood flow-induced MR signal changes seen during cognitive paradigms. Changes in blood oxygenation due to mismatch of flow and oxygen metabolism cause dynamic variations in microscopic susceptibility effects, leading to the blood oxygenation level-dependent (BOLD) signal measured by fMRI techniques. A related static macroscopic susceptibility effect is known to cause artifacts that attenuate the MR signal, leading to 'blind spots' in some regions of brain adjacent to bone and air sinuses. The anatomical location, spatial extent, and magnitude of signal loss artifact are quantitated for a common whole-brain fMRI technique. Resting gradient-echo EPI studies were obtained in four healthy volunteers. Signal loss was primarily localized to inferior frontal regions (medial orbital gyri and gyrus rectus) and to inferior lateral temporal lobe (including part of fusiform gyrus) bilaterally. Increased echo time (TE) uniformly produced larger artifacts. The orientation of acquired slices and choice of phase- encoding direction influenced the location, shape, and extent of the artifacts. Regions of the brain with severe artifact may have attenuated activation signal, with potential implications for the design and interpretation of fMRI studies targeting activations in these areas.

Original languageEnglish
Pages (from-to)156-167
Number of pages12
JournalNeuroImage
Volume6
Issue number3
DOIs
StatePublished - Oct 1997

Fingerprint Dive into the research topics of 'Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts'. Together they form a unique fingerprint.

  • Cite this