TY - JOUR
T1 - Analyzing pre-post randomized studies with one post-randomization score using repeated measures and ANCOVA models
AU - Wan, Fei
N1 - Publisher Copyright:
© The Author(s) 2018.
Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2019/11/1
Y1 - 2019/11/1
N2 - The analysis of covariance (ANCOVA) or repeated measures (RM) models are often used to compare the treatment effect between different arms in pre-post randomized studies. ANCOVA adjusts the baseline score as a covariate in regression models. RM treats both the baseline and post-randomization scores as outcome variables. We aim to establish the underlying connections between ANCOVA and a constrained RM (“cRM”). We start with the interrelated concepts in a pre-post randomized designs: homogeneous vs. heterogeneous study populations, the marginal vs. the conditional treatment effect, and homogeneity vs. heterogeneity of treatment effect. We then demonstrate the asymptotic equivalence between the ANCOVA and cRM estimators for the marginal treatment effect and discuss the conditions under which ANCOVA needs to include a baseline score by treatment interaction term. In particular, an ANCOVA interaction model with a mean centered baseline score can assess both the marginal treatment effect and the heterogeneity in the conditional treatment effect. However, the ordinary least squares (OLS)-based inference is not valid for unconditional inference because this interaction model typically has heteroskedastic errors, and ordinary least squares treats the sample mean of the baseline score as a known parameter. We propose a bootstrap and a heteroskedasticity consistent variance estimator for heteroskedastic ANCOVA. Our simulation studies demonstrate that the proposed methods provide valid inferences for testing both the marginal treatment effect and the heterogeneity of treatment effect using an ANCOVA interaction model. We used an acupuncture headache trial to elucidate the proposed approaches.
AB - The analysis of covariance (ANCOVA) or repeated measures (RM) models are often used to compare the treatment effect between different arms in pre-post randomized studies. ANCOVA adjusts the baseline score as a covariate in regression models. RM treats both the baseline and post-randomization scores as outcome variables. We aim to establish the underlying connections between ANCOVA and a constrained RM (“cRM”). We start with the interrelated concepts in a pre-post randomized designs: homogeneous vs. heterogeneous study populations, the marginal vs. the conditional treatment effect, and homogeneity vs. heterogeneity of treatment effect. We then demonstrate the asymptotic equivalence between the ANCOVA and cRM estimators for the marginal treatment effect and discuss the conditions under which ANCOVA needs to include a baseline score by treatment interaction term. In particular, an ANCOVA interaction model with a mean centered baseline score can assess both the marginal treatment effect and the heterogeneity in the conditional treatment effect. However, the ordinary least squares (OLS)-based inference is not valid for unconditional inference because this interaction model typically has heteroskedastic errors, and ordinary least squares treats the sample mean of the baseline score as a known parameter. We propose a bootstrap and a heteroskedasticity consistent variance estimator for heteroskedastic ANCOVA. Our simulation studies demonstrate that the proposed methods provide valid inferences for testing both the marginal treatment effect and the heterogeneity of treatment effect using an ANCOVA interaction model. We used an acupuncture headache trial to elucidate the proposed approaches.
KW - ANCOVA
KW - Pre-post designs
KW - conditional treatment effect
KW - marginal treatment effect
KW - repeated measures
UR - http://www.scopus.com/inward/record.url?scp=85052602123&partnerID=8YFLogxK
U2 - 10.1177/0962280218789972
DO - 10.1177/0962280218789972
M3 - Article
C2 - 30084297
AN - SCOPUS:85052602123
SN - 0962-2802
VL - 28
SP - 2952
EP - 2974
JO - Statistical Methods in Medical Research
JF - Statistical Methods in Medical Research
IS - 10-11
ER -