TY - JOUR
T1 - Analysis of histones in xenopus Laevis II. mass spectrometry reveals an index of cell type-specific modifications on H3 and H4
AU - Nicklay, Joshua J.
AU - Shechter, David
AU - Chitta, Raghu K.
AU - Garcia, Benjamin A.
AU - Shabanowitz, Jeffrey
AU - Allis, C. David
AU - Hunt, Donald F.
PY - 2009/1/9
Y1 - 2009/1/9
N2 - Epigenetic information is hypothesized to be encoded in his-tone variants and post-translational modifications. Varied cell-and locus-specific combinations of these epigenetic marks are likely contributors to regulation of chromatin-templated transactions, including transcription, replication, recombination, and repair. Therefore, the relative abundance of histone modifications in a given cell type is a potential index of cell fate and specificity. Here, we utilize mass spectrometry techniques to characterize the relative abundance index of cell type-specific modifications on histones H3 and H4 in distinct cell types from the frog Xenopus laevis, including the sperm, the stored prede-position histones in the egg, the early embryo equivalent pronu-clei, cultured somatic cells, and erythrocytes. We used collision-ally associated dissociation to identify the modifications present on histone H3 in a variety of cell types, resolving 26 distinctly modified H3 peptides. We employed the electron transfer dissociation fragmentation technique in a "middle-down" approach on the H4 N-terminal tail to explore the overlap of post-translational modifications. We observed 66 discrete iso-forms of the H4 1-23 fragment in four different cell types. Isolation of the stored, predeposition histone H4 from the frog egg also revealed a more varied pattern of modifications than the previously known diacetylation on Lys5 and Lys12. The developmental transitions of modifications on H3 and H4 were strikingly varied, implying a strong correlation of the histone code with cell type and fate. Our results are consistent with a histone code index for each cell type and uncover potential cross-talk between modifications on a single tail.
AB - Epigenetic information is hypothesized to be encoded in his-tone variants and post-translational modifications. Varied cell-and locus-specific combinations of these epigenetic marks are likely contributors to regulation of chromatin-templated transactions, including transcription, replication, recombination, and repair. Therefore, the relative abundance of histone modifications in a given cell type is a potential index of cell fate and specificity. Here, we utilize mass spectrometry techniques to characterize the relative abundance index of cell type-specific modifications on histones H3 and H4 in distinct cell types from the frog Xenopus laevis, including the sperm, the stored prede-position histones in the egg, the early embryo equivalent pronu-clei, cultured somatic cells, and erythrocytes. We used collision-ally associated dissociation to identify the modifications present on histone H3 in a variety of cell types, resolving 26 distinctly modified H3 peptides. We employed the electron transfer dissociation fragmentation technique in a "middle-down" approach on the H4 N-terminal tail to explore the overlap of post-translational modifications. We observed 66 discrete iso-forms of the H4 1-23 fragment in four different cell types. Isolation of the stored, predeposition histone H4 from the frog egg also revealed a more varied pattern of modifications than the previously known diacetylation on Lys5 and Lys12. The developmental transitions of modifications on H3 and H4 were strikingly varied, implying a strong correlation of the histone code with cell type and fate. Our results are consistent with a histone code index for each cell type and uncover potential cross-talk between modifications on a single tail.
UR - http://www.scopus.com/inward/record.url?scp=59449086329&partnerID=8YFLogxK
U2 - 10.1074/jbc.M807274200
DO - 10.1074/jbc.M807274200
M3 - Article
C2 - 18957437
AN - SCOPUS:59449086329
SN - 0021-9258
VL - 284
SP - 1075
EP - 1085
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 2
ER -