TY - JOUR
T1 - Analysis of 3D motion of in-vivo pacemaker leads
AU - Hoffmann, Kenneth R.
AU - Williams, Benjamin B.
AU - Esthappan, Jacqueline
AU - Chen, Shiuh Yung J.
AU - Fiebich, Martin
AU - Carroll, John D.
AU - Harauchi, Hajime
AU - Doerr, Vince
AU - Kay, G. Neal
AU - Eberhardt, Allen
AU - Overland, Mary
PY - 1997
Y1 - 1997
N2 - In vivo analyses of pacemaker lead motion during the cardiac cycle have become important due to incidences of failure of some of the components. For the calculation and evaluation of in vivo stresses in pacemaker leads, the 3D motion of the lead must be determined. To accomplish this, we have developed a technique for calculation of the overall and relative 3D position, and thereby the 3D motion, of in vivo pacemaker leads through the cardiac cycle.Biplane image sequences of patients with pacemakers were acquired for at least two cardiac cycles. After the patient acquisitions, biplane images of a calibration phantom were obtained. The biplane imaging geometries were calculated from the images of the calibration phantom. Points on the electrodes and the lead centerlines were indicated manually in all acquired images. The indicated points along the leads were then fit using a cubic spline. In each projection, the cumulative arclength along the centerlines in two temporally adjacent images was used to identify corresponding points along the centerlines. To overcome the non-synchronicity of the biplane image acquisition, temporal interpolation was performed using these corresponding points based on a linear scheme. For each time point, corresponding points along the lead centerlines in the pairs of biplane images were identified using epipolar lines. The 3D lead centerlines were calculated from the calculated imaging geometries and the corresponding image points along the lead centerlines. From these data, 3D lead motion and the variations of the lead position with time were calculated and evaluated throughout the cardiac cycle. The reproducibility of the indicated lead centerlines was approximately 0.3 mm. The precision of the calculated rotation matrix and translation vector defining image geometry were approximately 2 mm. 3D positions were reproducible to within 2 mm. Relative positional errors were less than 0.3 mm. Lead motion correlated strongly with phases of the cardiac cycle. Our results indicate that complex motions of in vivo pacemaker leads can be precisely determined. Thus, we believe that this technique will provide precise 3D motion and shapes on which to base subsequent stress analysis of pacemaker lead components.
AB - In vivo analyses of pacemaker lead motion during the cardiac cycle have become important due to incidences of failure of some of the components. For the calculation and evaluation of in vivo stresses in pacemaker leads, the 3D motion of the lead must be determined. To accomplish this, we have developed a technique for calculation of the overall and relative 3D position, and thereby the 3D motion, of in vivo pacemaker leads through the cardiac cycle.Biplane image sequences of patients with pacemakers were acquired for at least two cardiac cycles. After the patient acquisitions, biplane images of a calibration phantom were obtained. The biplane imaging geometries were calculated from the images of the calibration phantom. Points on the electrodes and the lead centerlines were indicated manually in all acquired images. The indicated points along the leads were then fit using a cubic spline. In each projection, the cumulative arclength along the centerlines in two temporally adjacent images was used to identify corresponding points along the centerlines. To overcome the non-synchronicity of the biplane image acquisition, temporal interpolation was performed using these corresponding points based on a linear scheme. For each time point, corresponding points along the lead centerlines in the pairs of biplane images were identified using epipolar lines. The 3D lead centerlines were calculated from the calculated imaging geometries and the corresponding image points along the lead centerlines. From these data, 3D lead motion and the variations of the lead position with time were calculated and evaluated throughout the cardiac cycle. The reproducibility of the indicated lead centerlines was approximately 0.3 mm. The precision of the calculated rotation matrix and translation vector defining image geometry were approximately 2 mm. 3D positions were reproducible to within 2 mm. Relative positional errors were less than 0.3 mm. Lead motion correlated strongly with phases of the cardiac cycle. Our results indicate that complex motions of in vivo pacemaker leads can be precisely determined. Thus, we believe that this technique will provide precise 3D motion and shapes on which to base subsequent stress analysis of pacemaker lead components.
KW - 3D motion
KW - Biplane
KW - Pacemakers
UR - http://www.scopus.com/inward/record.url?scp=0343106924&partnerID=8YFLogxK
U2 - 10.1117/12.274145
DO - 10.1117/12.274145
M3 - Conference article
AN - SCOPUS:0343106924
SN - 0277-786X
VL - 3034
SP - 594
EP - 598
JO - Proceedings of SPIE - The International Society for Optical Engineering
JF - Proceedings of SPIE - The International Society for Optical Engineering
T2 - Medical Imaging 1997: Image Processing
Y2 - 25 February 1997 through 25 February 1997
ER -