TY - JOUR
T1 - Anaerobic regulation of nitrogen-fixation genes in Rhodopseudomonas capsulata
AU - Kranz, R. G.
AU - Haselkorn, R.
PY - 1986
Y1 - 1986
N2 - A Rhodopseudomonas capsulata nifH::lacZ gene fusion was used to isolate constitutive mutants of R. capsulata, unable to repress nif gene transcription anaerobically with every fixed-nitrogen source tested. When these nif strains were grown aerobically, nif gene transcription was repressed. These results indicate that the regulation of nif gene transcription by fixed nitrogen is different from the regulation by oxygen. Under anaerobic conditions, nif gene transcription in both R. capsulata and Klebsiella pneumoniae is specifically prevented by inhibitors of DNA gyrase [DNA topoisomerase type II (ATP-hydrolyzing), EC 5.99.1.3]. A recent study has shown that anaerobically grown Salmonella typhimurium have high DNA gyrase activity, whereas aerobically grown cells have high DNA topoisomerase type I (EC 5.99.1.2) activity and DNA that is more relaxed [Yamamoto, N. & Droffner, M.L. (1985) Proc. Natl. Acad. Sci. USA 82, 2077-2081]. In view of these results, we suggest that the control of nif gene transcription in response to oxygen is determined by the action of DNA gyrase and DNA topoisomerase I. Thus, although nitrogen control of nif gene expression requires the products of regulatory genes for which constitutive mutations can be isolated, oxygen appears instead to prevent the adoption of a DNA conformation necessary, directly or indirectly, for nif gene transcription.
AB - A Rhodopseudomonas capsulata nifH::lacZ gene fusion was used to isolate constitutive mutants of R. capsulata, unable to repress nif gene transcription anaerobically with every fixed-nitrogen source tested. When these nif strains were grown aerobically, nif gene transcription was repressed. These results indicate that the regulation of nif gene transcription by fixed nitrogen is different from the regulation by oxygen. Under anaerobic conditions, nif gene transcription in both R. capsulata and Klebsiella pneumoniae is specifically prevented by inhibitors of DNA gyrase [DNA topoisomerase type II (ATP-hydrolyzing), EC 5.99.1.3]. A recent study has shown that anaerobically grown Salmonella typhimurium have high DNA gyrase activity, whereas aerobically grown cells have high DNA topoisomerase type I (EC 5.99.1.2) activity and DNA that is more relaxed [Yamamoto, N. & Droffner, M.L. (1985) Proc. Natl. Acad. Sci. USA 82, 2077-2081]. In view of these results, we suggest that the control of nif gene transcription in response to oxygen is determined by the action of DNA gyrase and DNA topoisomerase I. Thus, although nitrogen control of nif gene expression requires the products of regulatory genes for which constitutive mutations can be isolated, oxygen appears instead to prevent the adoption of a DNA conformation necessary, directly or indirectly, for nif gene transcription.
UR - http://www.scopus.com/inward/record.url?scp=0022449687&partnerID=8YFLogxK
U2 - 10.1073/pnas.83.18.6805
DO - 10.1073/pnas.83.18.6805
M3 - Article
C2 - 3018747
AN - SCOPUS:0022449687
SN - 0027-8424
VL - 83
SP - 6805
EP - 6809
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 18
ER -