An optimized CD4 T-cell response can control productive and latent gammaherpesvirus infection

Rebecca L. Sparks-Thissen, Douglas C. Braaten, Scott Kreher, Samuel H. Speck, Herbert W. Virgin IV

Research output: Contribution to journalArticlepeer-review

47 Scopus citations


CD4 T cells are important for control of infection with murine gammaherpesvirus 68 (γHV68), but it is not known whether CD4 T cells function via provision of help to other lymphocyte subsets, such as B cells and CD8 T cells, or have an independent antiviral function. Moreover, under conditions of natural infection, the CD4 T-cell response is not sufficient to eliminate infection. To determine the functional capacities of CD4 T cells under optimal or near-optimal conditions and to determine whether CD4 T cells can control γHV68 infection in the absence of CD8 T cells or B cells, we studied the effect of ovalbumin (OVA)-specific CD4 T cells on infection with a recombinant γHV68 that expresses OVA. OVA-specific CD4 T cells limited acute γHV68 replication and prolonged the life of infected T-cell receptor-transgenic RAG (DO.11.10/RAG) mice, demonstrating CD4 T-cell antiviral activity, independent of CD8 T cells and B cells. Despite CD4 T-cell-mediated control of acute infection, latent infection was established in DO.11.10/RAG mice. However, OVA-specific CD4 T cells reduced the frequency of latently infected cells both early (16 days postinfection) and late (42 days postinfection) after infection of mice containing CD8 T cells and B cells (DO.11.10 mice). These results show that OVA-specific CD4 T cells have B-cell and CD8 T-cell-independent antiviral functions in the control of acute infection and can, in the absence of preexisting CD8 T-cell or B-cell immunity, inhibit the establishment of gammaherpesvirus latency.

Original languageEnglish
Pages (from-to)6827-6835
Number of pages9
JournalJournal of virology
Issue number13
StatePublished - Jul 2004


Dive into the research topics of 'An optimized CD4 T-cell response can control productive and latent gammaherpesvirus infection'. Together they form a unique fingerprint.

Cite this