TY - JOUR
T1 - An optimized, broadly applicable piggyBac transposon induction system
AU - Qi, Zongtai
AU - Wilkinson, Michael Nathaniel
AU - Chen, Xuhua
AU - Sankararaman, Sumithra
AU - Mayhew, David
AU - Mitra, Robi David
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/4/20
Y1 - 2017/4/20
N2 - The piggyBac (PB) transposon has been used in a number of biological applications. The insertion of PB transposons into the genome can disrupt genes or regulatory regions, impacting cellular function, so for many experiments it is important that PB transposition is tightly controlled. Here, we systematically characterize three methods for the post-translational control of the PB transposon in four cell lines. We investigated fusions of the PB transposase with ERT2 and two degradation domains (FKBP-DD, DHFR-DD), in multiple orientations, and determined (i) the fold-induction achieved, (ii) the absolute transposition efficiency of the activated construct and (iii) the effects of two inducer molecules on cellular transcription and function. We found that the FKBP-DD confers the PB transposase with a higher transposition activity and better dynamic range than can be achieved with the other systems. In addition, we found that the FKBP-DD regulates transposon activity in a reversible and dose-dependent manner. Finally, we showed that Shld1, the chemical inducer of FKBP-DD, does not interfere with stem cell differentiation, whereas tamoxifen has significant effects. We believe the FKBP-based PB transposon induction will be useful for transposon-mediated genome engineering, insertional mutagenesis and the genome-wide mapping of transcription factor binding.
AB - The piggyBac (PB) transposon has been used in a number of biological applications. The insertion of PB transposons into the genome can disrupt genes or regulatory regions, impacting cellular function, so for many experiments it is important that PB transposition is tightly controlled. Here, we systematically characterize three methods for the post-translational control of the PB transposon in four cell lines. We investigated fusions of the PB transposase with ERT2 and two degradation domains (FKBP-DD, DHFR-DD), in multiple orientations, and determined (i) the fold-induction achieved, (ii) the absolute transposition efficiency of the activated construct and (iii) the effects of two inducer molecules on cellular transcription and function. We found that the FKBP-DD confers the PB transposase with a higher transposition activity and better dynamic range than can be achieved with the other systems. In addition, we found that the FKBP-DD regulates transposon activity in a reversible and dose-dependent manner. Finally, we showed that Shld1, the chemical inducer of FKBP-DD, does not interfere with stem cell differentiation, whereas tamoxifen has significant effects. We believe the FKBP-based PB transposon induction will be useful for transposon-mediated genome engineering, insertional mutagenesis and the genome-wide mapping of transcription factor binding.
UR - http://www.scopus.com/inward/record.url?scp=85019121875&partnerID=8YFLogxK
U2 - 10.1093/nar/gkw1290
DO - 10.1093/nar/gkw1290
M3 - Article
C2 - 28082389
AN - SCOPUS:85019121875
SN - 0305-1048
VL - 45
JO - Nucleic acids research
JF - Nucleic acids research
IS - 7
M1 - e55
ER -