Abstract

A stretchable conductor is one of the key components in soft electronics that allows the seamless integration of electronic devices and sensors on elastic substrates. Its unique advantages of mechanical flexibility and stretchability have enabled a variety of wearable bioelectronic devices that can conformably adapt to curved skin surfaces for long-term health monitoring applications. Here, we report a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based stretchable polymer blend that can be patterned using an inkjet printing process while exhibiting low sheet resistance and accommodating large mechanical deformations. We have systematically studied the effect of various types of polar solvent additives that can help induce phase separation of PEDOT and PSS grains and change the conformation of a PEDOT chain, thereby improving the electrical property of the film by facilitating charge hopping along the percolating PEDOT network. The optimal ink formulation is achieved by adding 5 wt % ethylene glycol into a pristine PEDOT:PSS aqueous solution, which results in a sheet resistance of as low as 58 ω/□. Elasticity can also be achieved by blending the above solution with the soft polymer poly(ethylene oxide) (PEO). Thin films of PEDOT:PSS/PEO polymer blends patterned by inkjet printing exhibits a low sheet resistance of 84 ω/ □ and can resist up to 50% tensile strain with minimal changes in electrical performance. With its good conductivity and elasticity, we have further demonstrated the use of the polymer blend as stretchable interconnects and stretchable dry electrodes on a thin polydimethylsiloxane (PDMS) substrate for photoplethysmography (PPG) and electrocardiography (ECG) recording applications. This work shows the potential of using a printed stretchable conducting polymer in low-cost wearable sensor patches for smart health applications.

Original languageEnglish
Pages (from-to)21693-21702
Number of pages10
JournalACS Applied Materials and Interfaces
Volume13
Issue number18
DOIs
StatePublished - May 12 2021

Keywords

  • conductive polymer
  • health monitoring devices
  • printed electronics
  • stretchable electronics
  • wearable sensors

Fingerprint

Dive into the research topics of 'An Inkjet-Printed PEDOT:PSS-Based Stretchable Conductor for Wearable Health Monitoring Device Applications'. Together they form a unique fingerprint.

Cite this