TY - JOUR
T1 - An image score inference system for RNAi genome-wide screening based on fuzzy mixture regression modeling
AU - Wang, Jun
AU - Zhou, Xiaobo
AU - Li, Fuhai
AU - Bradley, Pamela L.
AU - Chang, Shih Fu
AU - Perrimon, Norbert
AU - Wong, Stephen T.C.
N1 - Funding Information:
The authors thank Baillie Yip for labeling training data sets. They also thank research members of the Life Science Imaging Group of the Center for Bioinformatics, Harvard Center for Neurodegeneration and Repair (HCNR) and Brigham and Women’s Hospital, Harvard Medical School, for their technical comments. The research is funded by the HCNR, Harvard Medical School (Wong).
PY - 2009/2
Y1 - 2009/2
N2 - With recent advances in fluorescence microscopy imaging techniques and methods of gene knock down by RNA interference (RNAi), genome-scale high-content screening (HCS) has emerged as a powerful approach to systematically identify all parts of complex biological processes. However, a critical barrier preventing fulfillment of the success is the lack of efficient and robust methods for automating RNAi image analysis and quantitative evaluation of the gene knock down effects on huge volume of HCS data. Facing such opportunities and challenges, we have started investigation of automatic methods towards the development of a fully automatic RNAi-HCS system. Particularly important are reliable approaches to cellular phenotype classification and image-based gene function estimation. We have developed a HCS analysis platform that consists of two main components: fluorescence image analysis and image scoring. For image analysis, we used a two-step enhanced watershed method to extract cellular boundaries from HCS images. Segmented cells were classified into several predefined phenotypes based on morphological and appearance features. Using statistical characteristics of the identified phenotypes as a quantitative description of the image, a score is generated that reflects gene function. Our scoring model integrates fuzzy gene class estimation and single regression models. The final functional score of an image was derived using the weighted combination of the inference from several support vector-based regression models. We validated our phenotype classification method and scoring system on our cellular phenotype and gene database with expert ground truth labeling. We built a database of high-content, 3-channel, fluorescence microscopy images of Drosophila Kc167 cultured cells that were treated with RNAi to perturb gene function. The proposed informatics system for microscopy image analysis is tested on this database. Both of the two main components, automated phenotype classification and image scoring system, were evaluated. The robustness and efficiency of our system were validated in quantitatively predicting the biological relevance of genes.
AB - With recent advances in fluorescence microscopy imaging techniques and methods of gene knock down by RNA interference (RNAi), genome-scale high-content screening (HCS) has emerged as a powerful approach to systematically identify all parts of complex biological processes. However, a critical barrier preventing fulfillment of the success is the lack of efficient and robust methods for automating RNAi image analysis and quantitative evaluation of the gene knock down effects on huge volume of HCS data. Facing such opportunities and challenges, we have started investigation of automatic methods towards the development of a fully automatic RNAi-HCS system. Particularly important are reliable approaches to cellular phenotype classification and image-based gene function estimation. We have developed a HCS analysis platform that consists of two main components: fluorescence image analysis and image scoring. For image analysis, we used a two-step enhanced watershed method to extract cellular boundaries from HCS images. Segmented cells were classified into several predefined phenotypes based on morphological and appearance features. Using statistical characteristics of the identified phenotypes as a quantitative description of the image, a score is generated that reflects gene function. Our scoring model integrates fuzzy gene class estimation and single regression models. The final functional score of an image was derived using the weighted combination of the inference from several support vector-based regression models. We validated our phenotype classification method and scoring system on our cellular phenotype and gene database with expert ground truth labeling. We built a database of high-content, 3-channel, fluorescence microscopy images of Drosophila Kc167 cultured cells that were treated with RNAi to perturb gene function. The proposed informatics system for microscopy image analysis is tested on this database. Both of the two main components, automated phenotype classification and image scoring system, were evaluated. The robustness and efficiency of our system were validated in quantitatively predicting the biological relevance of genes.
KW - High-content screening
KW - Image score inference
UR - http://www.scopus.com/inward/record.url?scp=60049097633&partnerID=8YFLogxK
U2 - 10.1016/j.jbi.2008.04.007
DO - 10.1016/j.jbi.2008.04.007
M3 - Article
C2 - 18547870
AN - SCOPUS:60049097633
SN - 1532-0464
VL - 42
SP - 32
EP - 40
JO - Journal of Biomedical Informatics
JF - Journal of Biomedical Informatics
IS - 1
ER -