TY - JOUR
T1 - An essential oligomannosidic glycan chain in the catalytic domain of autotaxin, a secreted lysophospholipase-D
AU - Jansen, Silvia
AU - Callewaert, Nico
AU - Dewerte, Isabelle
AU - Andries, Maria
AU - Ceulemans, Hugo
AU - Bollen, Mathieu
PY - 2007/4/13
Y1 - 2007/4/13
N2 - Autotaxin/NPP2, a secreted lysophospholipase-D, promotes cell proliferation, survival, and motility by generating the signaling molecule lysophosphatidic acid. Here we show that ectonucleotide pyrophosphatase/ phosphodiesterase 2 (NPP2) is N-glycosylated on Asn-53, Asn-410, and Asn-524. Mutagenesis and deglycosylation experiments revealed that only the glycosylation of Asn-524 is essential for the expression of the catalytic and motility-stimulating activities of NPP2. The N-glycan on Asn-524 was identified as Man8/9GlcNAc2, which is rarely present on mature eukaryotic glycoproteins. Additional studies show that this Asn-524-linked glycan is not accessible to α-1,2-mannosidase, suggesting that its non-reducing termini are buried inside the folded protein. Consistent with a structural role for the Asn-524-linked glycan, only the mutation of Asn-524 augmented the sensitivity of NPP2 to proteolysis and increased its mobility during Blue Native PAGE. Asn-524 is phylogenetically conserved and maps to the catalytic domain of NPP2, but a structural model of this domain suggests that Asn-524 is remote from the catalytic site. Our study defines an essential role for the Asn-524-linked glycan chain of NPP2.
AB - Autotaxin/NPP2, a secreted lysophospholipase-D, promotes cell proliferation, survival, and motility by generating the signaling molecule lysophosphatidic acid. Here we show that ectonucleotide pyrophosphatase/ phosphodiesterase 2 (NPP2) is N-glycosylated on Asn-53, Asn-410, and Asn-524. Mutagenesis and deglycosylation experiments revealed that only the glycosylation of Asn-524 is essential for the expression of the catalytic and motility-stimulating activities of NPP2. The N-glycan on Asn-524 was identified as Man8/9GlcNAc2, which is rarely present on mature eukaryotic glycoproteins. Additional studies show that this Asn-524-linked glycan is not accessible to α-1,2-mannosidase, suggesting that its non-reducing termini are buried inside the folded protein. Consistent with a structural role for the Asn-524-linked glycan, only the mutation of Asn-524 augmented the sensitivity of NPP2 to proteolysis and increased its mobility during Blue Native PAGE. Asn-524 is phylogenetically conserved and maps to the catalytic domain of NPP2, but a structural model of this domain suggests that Asn-524 is remote from the catalytic site. Our study defines an essential role for the Asn-524-linked glycan chain of NPP2.
UR - http://www.scopus.com/inward/record.url?scp=34247495740&partnerID=8YFLogxK
U2 - 10.1074/jbc.M611503200
DO - 10.1074/jbc.M611503200
M3 - Article
C2 - 17307740
AN - SCOPUS:34247495740
SN - 0021-9258
VL - 282
SP - 11084
EP - 11091
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 15
ER -