TY - GEN
T1 - An auxiliary attention-based network for joint classification and localization of breast tumor on ultrasound images
AU - Fan, Zong
AU - Gong, Ping
AU - Zhang, Xiaohui
AU - Wang, Zhimin
AU - Hao, Yao
AU - Song, Pengfei
AU - Chen, Shigao
AU - Li, Hua
N1 - Publisher Copyright:
© 2023 SPIE.
PY - 2023
Y1 - 2023
N2 - Ultrasound imaging is an effective screening tool for early diagnosis of breast tumor to decrease the mortality rate. However, differentiation of tumor type based on ultrasound images remains challenging in the field of medical imaging due to the inherent noise and speckles. Thus, obtaining additional information for lesion localization could better support the decision-making by clinicians and improve diagnosis fidelity. Recently, multi-task learning (MTL) methods have been proposed for joint tumor classification and localization, where promising results were demonstrated. However, most MTL methods trained independent network branches for the two different tasks, which might cause conflicts in optimizing features due to their different purposes. In addition, these methods usually require fully-segmented datasets for model training, which poses a heavy burden in data annotation. To overcome these limitations, we propose a novel MTL framework for joint breast tumor classification and localization, motivated by the idea of attention mechanism and weakly-supervised learning strategy. Our method has three major advantages. First, an auxiliary lesion-aware network (LA-Net) with multiple attention modules for lesion localization was designed on top of a pre-defined classification network. In this way, the extracted features for classification were directly augmented by the region of interest (ROI) predicted by the LA-Net, alleviating the potential conflicts between the two tasks. Second, a sequential training strategy with a weakly-supervised learning scheme was employed to train the LA-Net and the classification network iteratively, which allows the model to be trained on the partially-segmented datasets and reduces the burden on data annotation. Third, the LA-Net and classification network design are modularized so that both architectures can be flexibly adjusted for various applications. Results from experiments performed on two breast ultrasound image datasets demonstrated the effectiveness of the proposed method.
AB - Ultrasound imaging is an effective screening tool for early diagnosis of breast tumor to decrease the mortality rate. However, differentiation of tumor type based on ultrasound images remains challenging in the field of medical imaging due to the inherent noise and speckles. Thus, obtaining additional information for lesion localization could better support the decision-making by clinicians and improve diagnosis fidelity. Recently, multi-task learning (MTL) methods have been proposed for joint tumor classification and localization, where promising results were demonstrated. However, most MTL methods trained independent network branches for the two different tasks, which might cause conflicts in optimizing features due to their different purposes. In addition, these methods usually require fully-segmented datasets for model training, which poses a heavy burden in data annotation. To overcome these limitations, we propose a novel MTL framework for joint breast tumor classification and localization, motivated by the idea of attention mechanism and weakly-supervised learning strategy. Our method has three major advantages. First, an auxiliary lesion-aware network (LA-Net) with multiple attention modules for lesion localization was designed on top of a pre-defined classification network. In this way, the extracted features for classification were directly augmented by the region of interest (ROI) predicted by the LA-Net, alleviating the potential conflicts between the two tasks. Second, a sequential training strategy with a weakly-supervised learning scheme was employed to train the LA-Net and the classification network iteratively, which allows the model to be trained on the partially-segmented datasets and reduces the burden on data annotation. Third, the LA-Net and classification network design are modularized so that both architectures can be flexibly adjusted for various applications. Results from experiments performed on two breast ultrasound image datasets demonstrated the effectiveness of the proposed method.
UR - http://www.scopus.com/inward/record.url?scp=85159711425&partnerID=8YFLogxK
U2 - 10.1117/12.2654106
DO - 10.1117/12.2654106
M3 - Conference contribution
AN - SCOPUS:85159711425
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2023
A2 - Colliot, Olivier
A2 - Isgum, Ivana
PB - SPIE
T2 - Medical Imaging 2023: Image Processing
Y2 - 19 February 2023 through 23 February 2023
ER -