Chronic lung disease is often accompanied by disabling extrapulmonary symptoms, notably skeletal muscle dysfunction and atrophy. Moreover, the severity of respiratory symptoms correlates with decreased muscle mass and in turn lowered physical activity and survival rates. Previous models of muscle atrophy in chronic lung disease often modeled chronic obstructive pulmonary disease (COPD) and relied on cigarette smoke exposure and LPS stimulation, but these conditions independently affect skeletal muscle even without accompanying lung disease. Moreover, there is an emerging and pressing need to understand the extrapulmonary manifestations of long-term post-viral lung disease (PVLD) as found in COVID-19. Here, we examine the development of skeletal muscle dysfunction in the setting of chronic pulmonary disease caused by infection due to the natural pathogen Sendai virus using a mouse model of PVLD. We identify a significant decrease in myofiber size when PVLD is maximal at 49 days after infection. We find no change in the relative types of myofibers, but the greatest decrease in fiber size is localized to fast-twitch-type IIB myofibers based on myosin heavy chain immunostaining. Remarkably, all biomarkers of myocyte protein synthesis and degradation (total RNA, ribosomal abundance, and ubiquitin-proteasome expression) were stable throughout the acute infectious illness and chronic post-viral disease process. Together, the results demonstrate a distinct pattern of skeletal muscle dysfunction in a mouse model of long-term PVLD. The findings thereby provide new insights into prolonged limitations in exercise capacity in patients with chronic lung disease after viral infections and perhaps other types of lung injury. NEW & NOTEWORTHY Our study used a mouse model of post-viral lung disease to study the impact of chronic lung disease on skeletal muscle. The model reveals a decrease in myofiber size that is selective for specific types of myofibers and an alternative mechanism for muscle atrophy that might be independent of the usual markers of protein synthesis and degradation. The findings provide a basis for new therapeutic strategies to correct skeletal muscle dysfunction in chronic respiratory disease.

Original languageEnglish
Pages (from-to)L870-L878
JournalAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
Issue number6
StatePublished - Jun 2023


  • chronic obstructive pulmonary disease (COPD)
  • coronavirus disease of 2019 (COVID-19)
  • respiratory viral infection
  • skeletal muscle atrophy
  • skeletal muscle myofiber


Dive into the research topics of 'An alternative mechanism for skeletal muscle dysfunction in long-term postviral lung disease'. Together they form a unique fingerprint.

Cite this