TY - JOUR
T1 - An α-1,3-Mannosyltransferase of Cryptococcus neoformans
AU - Sommer, Ulf
AU - Liu, Hong
AU - Doering, Tamara L.
PY - 2003/11/28
Y1 - 2003/11/28
N2 - Cryptococcus neoformans is a pathogenic fungus, distinguished by an elaborate polysaccharide capsule that is essential for its virulence. As part of an effort to understand the biosynthesis of this important structure, we initiated purification of an α-1,3-mannosyltransferase with appropriate specificity for a role in building the main capsule polysaccharide, glucuronoxylomannan. A pool of proteins that was 5,000-fold enriched in this activity included several polypeptides, which acted potentially as the catalytic protein. These were analyzed using sequence information and double-stranded RNA interference. Interference that targeted a sequence corresponding to part of a 46 kDa protein in the enriched fraction abolished the activity of interest and reduced the capsule on the affected cells. This gene was cloned and expressed in active form in Saccharomyces cerevisiae to confirm function, and was termed CMT1, for cryptococcal mannosyltransferase 1. CMT1 has no confirmed homologs in GenBank™ other than CAP59, a cryptococcal gene encoding a protein of unknown function that is required for capsule synthesis and virulence. The Cmt1p protein also co-purifies with a homolog of CAP64, a gene whose product has similarly been implicated in capsule synthesis and virulence. A strain disrupted in CMT1 was generated in C. neoformans; this had no effect on virulence in an animal model of cryptococcosis.
AB - Cryptococcus neoformans is a pathogenic fungus, distinguished by an elaborate polysaccharide capsule that is essential for its virulence. As part of an effort to understand the biosynthesis of this important structure, we initiated purification of an α-1,3-mannosyltransferase with appropriate specificity for a role in building the main capsule polysaccharide, glucuronoxylomannan. A pool of proteins that was 5,000-fold enriched in this activity included several polypeptides, which acted potentially as the catalytic protein. These were analyzed using sequence information and double-stranded RNA interference. Interference that targeted a sequence corresponding to part of a 46 kDa protein in the enriched fraction abolished the activity of interest and reduced the capsule on the affected cells. This gene was cloned and expressed in active form in Saccharomyces cerevisiae to confirm function, and was termed CMT1, for cryptococcal mannosyltransferase 1. CMT1 has no confirmed homologs in GenBank™ other than CAP59, a cryptococcal gene encoding a protein of unknown function that is required for capsule synthesis and virulence. The Cmt1p protein also co-purifies with a homolog of CAP64, a gene whose product has similarly been implicated in capsule synthesis and virulence. A strain disrupted in CMT1 was generated in C. neoformans; this had no effect on virulence in an animal model of cryptococcosis.
UR - http://www.scopus.com/inward/record.url?scp=0344842282&partnerID=8YFLogxK
U2 - 10.1074/jbc.M307223200
DO - 10.1074/jbc.M307223200
M3 - Article
C2 - 14504286
AN - SCOPUS:0344842282
VL - 278
SP - 47724
EP - 47730
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 48
ER -