Amygdala Stimulation Leads to Functional Network Connectivity State Transitions in the Hippocampus

Mohammad S.E. Sendi, Vasiliki Kanta, Cory S. Inman, Joseph R. Manns, Stephan Hamann, Robert E. Gross, Jon T. Willie, Babak Mahmoudi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Several studies have shown that direct brain stimulation can enhance memory in humans and animal models. Investigating the neurophysiological changes induced by brain stimulation is an important step towards understanding the neural processes underlying memory function. Furthermore, it paves the way for developing more efficient neuromodulation approaches for memory enhancement. In this study, we utilized a combination of unsupervised and supervised machine learning approaches to investigate how amygdala stimulation modulated hippocampal network activities during the encoding phase. Using a sliding window in time, we estimated the hippocampal dynamic functional network connectivity (dFNC) after stimulation and during sham trials, based on the covariance of local field potential recordings in 4 subregions of the hippocampus. We extracted different network states by combining the dFNC samples from 5 subjects and applying k-means clustering. Next, we used the between-state transition numbers as the latent features to classify between amygdala stimulation and sham trials across all subjects. By training a logistic regression model, we could differentiate stimulated from sham trials with 67% accuracy across all subjects. Using elastic net regularization as a feature selection method, we identified specific patterns of hippocampal network state transition in response to amygdala stimulation. These results offer a new approach to better understanding of the causal relationship between hippocampal network dynamics and memory-enhancing amygdala stimulation.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3625-3628
Number of pages4
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period07/20/2007/24/20

Fingerprint

Dive into the research topics of 'Amygdala Stimulation Leads to Functional Network Connectivity State Transitions in the Hippocampus'. Together they form a unique fingerprint.

Cite this