Alveolar Airspace Size in Healthy and Diseased Infant Lungs Measured via Hyperpolarized 3He Gas Diffusion Magnetic Resonance Imaging

Nara S. Higano, Robert P. Thomen, James D. Quirk, Heidie L. Huyck, Andrew D. Hahn, Sean B. Fain, Gloria S. Pryhuber, Jason C. Woods

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Alveolar development and lung parenchymal simplification are not well characterized in vivo in neonatal patients with respiratory morbidities, such as bronchopulmonary dysplasia (BPD). Hyperpolarized (HP) gas diffusion magnetic resonance imaging (MRI) is a sensitive, safe, nonionizing, and noninvasive biomarker for measuring airspace size in vivo but has not yet been implemented in young infants. Objective: This work quantified alveolar airspace size via HP gas diffusion MRI in healthy and diseased explanted infant lung specimens, with comparison to histological morphometry. Methods: Lung specimens from 8 infants were obtained: 7 healthy left upper lobes (0-16 months, post-autopsy) and 1 left lung with filamin-A mutation, closely representing BPD lung disease (11 months, post-transplantation). Specimens were imaged using HP 3He diffusion MRI to generate apparent diffusion coefficients (ADCs) as biomarkers of alveolar airspace size, with comparison to mean linear intercept (Lm) via quantitative histology. Results: Mean ADC and Lm were significantly increased throughout the diseased specimen (ADC = 0.26 ± 0.06 cm2/s, Lm = 587 ± 212 μm) compared with healthy specimens (ADC = 0.14 ± 0.03 cm2/s, Lm = 133 ± 37 μm; p < 1 × 10-7); increased values reflect enlarged airspaces. Mean ADCs in healthy specimens were significantly correlated to Lm (r = 0.69, p = 0.041). Conclusions: HP gas diffusion MRI is sensitive to healthy and diseased regional alveolar airspace size in infant lungs, with good comparison to quantitative histology in ex vivo specimens. This work demonstrates the translational potential of gas MRI techniques for in vivo assessment of normal and abnormal alveolar development in neonates with pulmonary disease.

Original languageEnglish
Pages (from-to)704-712
Number of pages9
JournalNeonatology
Volume117
Issue number6
DOIs
StatePublished - Feb 2021

Keywords

  • Alveolar airspace
  • Bronchopulmonary dysplasia
  • Gas diffusion MRI
  • Helium-3
  • Hyperpolarized gas
  • Infant lungs
  • Lung development
  • Magnetic resonance imaging
  • Prematurity

Fingerprint Dive into the research topics of 'Alveolar Airspace Size in Healthy and Diseased Infant Lungs Measured via Hyperpolarized <sup>3</sup>He Gas Diffusion Magnetic Resonance Imaging'. Together they form a unique fingerprint.

Cite this