TY - JOUR
T1 - Alternative splicing mechanisms underlying opioid-induced hyperalgesia
AU - Zhang, Pan
AU - Perez, Olivia C.
AU - Southey, Bruce R.
AU - Sweedler, Jonathan V.
AU - Pradhan, Amynah A.
AU - Rodriguez-Zas, Sandra L.
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/10
Y1 - 2021/10
N2 - Prolonged use of opioids can cause opioid-induced hyperalgesia (OIH). The impact of alternative splicing on OIH remains partially characterized. A study of the absolute and relative modes of action of alternative splicing further the understanding of the molecular mechanisms underlying OIH. Differential absolute and relative isoform profiles were detected in the trigeminal ganglia and nucleus accumbens of mice presenting OIH behaviors elicited by chronic morphine administration relative to control mice. Genes that participate in glutamatergic synapse (e.g., Grip1, Grin1, Wnk3), myelin protein processes (e.g., Mbp, Mpz), and axon guidance presented absolute and relative splicing associated with OIH. Splicing of genes in the gonadotropin-releasing hormone receptor pathway was detected in the nucleus accumbens while splicing in the vascular endothelial growth factor, endogenous cannabinoid signaling, circadian clock system, and metabotropic gluta-mate receptor pathways was detected in the trigeminal ganglia. A notable finding was the prevalence of alternatively spliced transcription factors and regulators (e.g., Ciart, Ablim2, Pbx1, Arntl2) in the trigeminal ganglia. Insights into the nociceptive and antinociceptive modulatory action of Hnrnpk were gained. The results from our study highlight the impact of alternative splicing and transcriptional regulators on OIH and expose the need for isoform-level research to advance the understanding of morphine-associated hyperalgesia.
AB - Prolonged use of opioids can cause opioid-induced hyperalgesia (OIH). The impact of alternative splicing on OIH remains partially characterized. A study of the absolute and relative modes of action of alternative splicing further the understanding of the molecular mechanisms underlying OIH. Differential absolute and relative isoform profiles were detected in the trigeminal ganglia and nucleus accumbens of mice presenting OIH behaviors elicited by chronic morphine administration relative to control mice. Genes that participate in glutamatergic synapse (e.g., Grip1, Grin1, Wnk3), myelin protein processes (e.g., Mbp, Mpz), and axon guidance presented absolute and relative splicing associated with OIH. Splicing of genes in the gonadotropin-releasing hormone receptor pathway was detected in the nucleus accumbens while splicing in the vascular endothelial growth factor, endogenous cannabinoid signaling, circadian clock system, and metabotropic gluta-mate receptor pathways was detected in the trigeminal ganglia. A notable finding was the prevalence of alternatively spliced transcription factors and regulators (e.g., Ciart, Ablim2, Pbx1, Arntl2) in the trigeminal ganglia. Insights into the nociceptive and antinociceptive modulatory action of Hnrnpk were gained. The results from our study highlight the impact of alternative splicing and transcriptional regulators on OIH and expose the need for isoform-level research to advance the understanding of morphine-associated hyperalgesia.
KW - Glutamatergic system
KW - Morphine
KW - Transcript isoform
KW - Transcription factor
UR - http://www.scopus.com/inward/record.url?scp=85116943809&partnerID=8YFLogxK
U2 - 10.3390/genes12101570
DO - 10.3390/genes12101570
M3 - Article
C2 - 34680965
AN - SCOPUS:85116943809
SN - 2073-4425
VL - 12
JO - Genes
JF - Genes
IS - 10
M1 - 1570
ER -