Most forms of Parkinson's disease (PD) are sporadic in nature, but some have genetic causes as first described for the α-synuclein gene. The α-synuclein protein also accumulates as insoluble aggregates in Lewy bodies in sporadic PD as well as in most inherited forms of PD. The focus of the present study is the modulation of synaptic plasticity in the corticostriatal pathway of transgenic (Tg) mice that overexpress the human α-synuclein protein throughout the brain (ASOTg). Paired-pulse facilitation was detected in vitro by activation of corticostriatal afferents in ASOTg mice, consistent with a presynaptic effect of elevated human α-synuclein. However basal synaptic transmission was unchanged in ASOTg, suggesting that human α-synuclein could impact paired-pulse facilitation via a presynaptic mechanism not directly related to the probability of neurotransmitter release. Mice lacking α-synuclein or those expressing normal and A53T human α-synuclein in tyrosine hydroxylase-containing neurons showed, instead, paired-pulse depression. High-frequency stimulation induced a presynaptic form of long-term depression solely in ASOTg striatum. A presynaptic, N-methyl-d-aspartate receptor-independent form of chemical long-term potentiation induced by forskolin (FSK) was enhanced in ASOTg striatum, while FSK-induced cAMP levels were reduced in ASOTg synaptoneurosome fractions. Overall the results suggest that elevated human α-synuclein alters presynaptic plasticity in the corticostriatal pathway, possibly reflecting a reduction in glutamate at corticostriatal synapses by modulation of adenylyl cyclase signaling pathways. ASOTg mice may recapitulate an early stage in PD during which overexpressed α-synuclein dampens corticostriatal synaptic transmission and reduces movement.

Original languageEnglish
Pages (from-to)501-513
Number of pages13
Issue number2
StatePublished - Mar 17 2009


  • LTD
  • cAMP
  • chemLTP
  • facilitation
  • paired-pulse
  • presynaptic


Dive into the research topics of 'Alterations in corticostriatal synaptic plasticity in mice overexpressing human α-synuclein'. Together they form a unique fingerprint.

Cite this