TY - JOUR
T1 - Alkaline phosphatase
T2 - Placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5'- phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy
AU - Whyte, M. P.
AU - Landt, M.
AU - Ryan, L. M.
AU - Mulivor, R. A.
AU - Henthorn, P. S.
AU - Fedde, K. N.
AU - Mahuren, J. D.
AU - Coburn, S. P.
PY - 1995
Y1 - 1995
N2 - Hypophosphatasia features selective deficiency of activity of the tissue- nonspecific (liver/bone/kidney) alkaline phosphatase (ALP) isoenzyme (TNSALP); placental and intestinal ALP isoenzyme (PALP and IALP, respectively) activity is not reduced. Three phosphocompounds (phosphoethanolamine [PEA], inorganic pyrophosphate [PPi], and pyridoxal 5'- phosphate [PLP]) accumulate endogenously and appear, therefore, to be natural substrates for TNSALP. Carriers for hypophosphatasia may have decreased serum ALP activity and elevated substrate levels. To test whether human PALP and TNSALP are physiologically active toward the same substrates, we studied PEA, PPi, and PLP levels during and after pregnancy in three women who are carriers for hypophosphatasia. Hypophosphatasemia corrected during the third trimester because of PALP in maternal blood. Blood or urine concentrations of PEA, PPi, and PLP diminished substantially during that time. After childbirth, maternal circulating levels of PALP decreased, and PEA, PPi, and PLP levels abruptly increased. In serum, unremarkable concentrations of IALP and low levels of TNSALP did not change during the study period. We conclude that PALP, like TNSALP, is physiologically active toward PEA, PPi, and PLP in humans. We speculate from molecular/crystallographic information, indicating significant similarity of structure of the substrate-binding site of ALPs throughout nature, that all ALP isoenzymes recognize these same three phosphocompound substrates.
AB - Hypophosphatasia features selective deficiency of activity of the tissue- nonspecific (liver/bone/kidney) alkaline phosphatase (ALP) isoenzyme (TNSALP); placental and intestinal ALP isoenzyme (PALP and IALP, respectively) activity is not reduced. Three phosphocompounds (phosphoethanolamine [PEA], inorganic pyrophosphate [PPi], and pyridoxal 5'- phosphate [PLP]) accumulate endogenously and appear, therefore, to be natural substrates for TNSALP. Carriers for hypophosphatasia may have decreased serum ALP activity and elevated substrate levels. To test whether human PALP and TNSALP are physiologically active toward the same substrates, we studied PEA, PPi, and PLP levels during and after pregnancy in three women who are carriers for hypophosphatasia. Hypophosphatasemia corrected during the third trimester because of PALP in maternal blood. Blood or urine concentrations of PEA, PPi, and PLP diminished substantially during that time. After childbirth, maternal circulating levels of PALP decreased, and PEA, PPi, and PLP levels abruptly increased. In serum, unremarkable concentrations of IALP and low levels of TNSALP did not change during the study period. We conclude that PALP, like TNSALP, is physiologically active toward PEA, PPi, and PLP in humans. We speculate from molecular/crystallographic information, indicating significant similarity of structure of the substrate-binding site of ALPs throughout nature, that all ALP isoenzymes recognize these same three phosphocompound substrates.
KW - enzyme
KW - mineralization
KW - phosphocompounds
KW - rickets
KW - vitamin B
UR - http://www.scopus.com/inward/record.url?scp=0028914274&partnerID=8YFLogxK
U2 - 10.1172/JCI117814
DO - 10.1172/JCI117814
M3 - Article
C2 - 7706447
AN - SCOPUS:0028914274
SN - 0021-9738
VL - 95
SP - 1440
EP - 1445
JO - Journal of Clinical Investigation
JF - Journal of Clinical Investigation
IS - 4
ER -