Alkaline phosphatase: Placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5'- phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy

M. P. Whyte, M. Landt, L. M. Ryan, R. A. Mulivor, P. S. Henthorn, K. N. Fedde, J. D. Mahuren, S. P. Coburn

Research output: Contribution to journalArticle

126 Scopus citations

Abstract

Hypophosphatasia features selective deficiency of activity of the tissue- nonspecific (liver/bone/kidney) alkaline phosphatase (ALP) isoenzyme (TNSALP); placental and intestinal ALP isoenzyme (PALP and IALP, respectively) activity is not reduced. Three phosphocompounds (phosphoethanolamine [PEA], inorganic pyrophosphate [PPi], and pyridoxal 5'- phosphate [PLP]) accumulate endogenously and appear, therefore, to be natural substrates for TNSALP. Carriers for hypophosphatasia may have decreased serum ALP activity and elevated substrate levels. To test whether human PALP and TNSALP are physiologically active toward the same substrates, we studied PEA, PPi, and PLP levels during and after pregnancy in three women who are carriers for hypophosphatasia. Hypophosphatasemia corrected during the third trimester because of PALP in maternal blood. Blood or urine concentrations of PEA, PPi, and PLP diminished substantially during that time. After childbirth, maternal circulating levels of PALP decreased, and PEA, PPi, and PLP levels abruptly increased. In serum, unremarkable concentrations of IALP and low levels of TNSALP did not change during the study period. We conclude that PALP, like TNSALP, is physiologically active toward PEA, PPi, and PLP in humans. We speculate from molecular/crystallographic information, indicating significant similarity of structure of the substrate-binding site of ALPs throughout nature, that all ALP isoenzymes recognize these same three phosphocompound substrates.

Original languageEnglish
Pages (from-to)1440-1445
Number of pages6
JournalJournal of Clinical Investigation
Volume95
Issue number4
DOIs
StatePublished - Jan 1 1995
Externally publishedYes

Keywords

  • enzyme
  • mineralization
  • phosphocompounds
  • rickets
  • vitamin B

Fingerprint Dive into the research topics of 'Alkaline phosphatase: Placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5'- phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy'. Together they form a unique fingerprint.

  • Cite this