TY - JOUR
T1 - Age-specific changes in genome-wide methylation enrich for Foxa2 and estrogen receptor alpha binding sites
AU - Uli, Nishanth
AU - Michelen-Gomez, Eduardo
AU - Ramos, Enrique I.
AU - Druley, Todd E.
N1 - Publisher Copyright:
© 2018 Uli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/9
Y1 - 2018/9
N2 - The role of DNA methylation patterns in complex phenotypes remains unclear. To explore this question, we adapted our methods for rare variant analysis to characterize genome-wide murine DNA hybridization array to investigate methylation at CpG islands, shores, and regulatory elements. We have applied this platform to compare age and tissue- specific methylation differences in the brain and spleen of young and aged mice. As expected from prior studies, there are clear global differences in organ-specific, but not age-specific, methylation due mostly to changes at repetitive elements. Surprisingly, out of 200,000 loci there were only 946 differentially methylated cytosines (DMCs) between young and old samples (529 hypermethylated, 417 hypomethylated in aged mice) compared to thousands of tissue-specific DMCs. Hypermethylated loci were clustered around the promoter region of Sfi1, exon 2 of Slc11a2, Drg1, Esr1 and Foxa2 transcription factor binding sites. In particular, there were 75 hypermethylated Foxa2 binding sites across a 2.7 Mb region of chromosome 11. Hypomethylated loci were clustered around Mid1, Isoc2b and genome-wide loci with binding sites for Foxa2 and Esr1, which are known to play important roles in development and aging. These data suggest discreet tissue-independent methylation changes associated with aging processes such as cell division (Sfi1, Mid1), energy production (Drg1, Isoc2b) and cell death (Foxa2, Esr1).
AB - The role of DNA methylation patterns in complex phenotypes remains unclear. To explore this question, we adapted our methods for rare variant analysis to characterize genome-wide murine DNA hybridization array to investigate methylation at CpG islands, shores, and regulatory elements. We have applied this platform to compare age and tissue- specific methylation differences in the brain and spleen of young and aged mice. As expected from prior studies, there are clear global differences in organ-specific, but not age-specific, methylation due mostly to changes at repetitive elements. Surprisingly, out of 200,000 loci there were only 946 differentially methylated cytosines (DMCs) between young and old samples (529 hypermethylated, 417 hypomethylated in aged mice) compared to thousands of tissue-specific DMCs. Hypermethylated loci were clustered around the promoter region of Sfi1, exon 2 of Slc11a2, Drg1, Esr1 and Foxa2 transcription factor binding sites. In particular, there were 75 hypermethylated Foxa2 binding sites across a 2.7 Mb region of chromosome 11. Hypomethylated loci were clustered around Mid1, Isoc2b and genome-wide loci with binding sites for Foxa2 and Esr1, which are known to play important roles in development and aging. These data suggest discreet tissue-independent methylation changes associated with aging processes such as cell division (Sfi1, Mid1), energy production (Drg1, Isoc2b) and cell death (Foxa2, Esr1).
UR - http://www.scopus.com/inward/record.url?scp=85054071395&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0203147
DO - 10.1371/journal.pone.0203147
M3 - Article
C2 - 30256791
AN - SCOPUS:85054071395
SN - 1932-6203
VL - 13
JO - PloS one
JF - PloS one
IS - 9
M1 - e0203147
ER -