TY - JOUR
T1 - Adora2b adenosine receptor signaling protects during acute kidney injury via inhibition of neutrophil-dependent TNF-α release
AU - Grenz, Almut
AU - Kim, Jae Hwan
AU - Bauerle, Jessica D.
AU - Tak, Eunyoung
AU - Eltzschig, Holger K.
AU - Clambey, Eric T.
PY - 2012/11/1
Y1 - 2012/11/1
N2 - Renal ischemia is among the leading causes of acute kidney injury (AKI). Previous studies have shown that extracellular adenosine is a prominent tissue-protective cue elicited during ischemia, including signaling events through the adenosine receptor 2b (Adora2b). To investigate the functional role of Adora2b signaling in cytokine-mediated inflammatory pathways, we screened wild-type and Adora2b-deficient mice undergoing renal ischemia for expression of a range of inflammatory cytokines. These studies demonstrated a selective and robust increase of TNF-α levels in Adora2b-deficient mice following renal ischemia and reperfusion. Based on these findings, we next sought to understand the contribution of TNF-α on ischemic AKI through a combination of loss- and gain-of-function studies. Loss of TNF-α, through either Ab blockade or study of Tnf-α-deficient animals, resulted in significantly attenuated tissue injury and improved kidney function following renal ischemia. Conversely, transgenic mice with overexpression of TNF-α had significantly pronounced susceptibility to AKI. Furthermore, neutrophil depletion or reconstitution of Adora2b-/- mice with Tnf-α-deficient neutrophils rescued their phenotype. In total, these data demonstrate a critical role of adenosine signaling in constraining neutrophil-dependent production of TNF-α and implicate therapies targeting TNF-α in the treatment of ischemic AKI.
AB - Renal ischemia is among the leading causes of acute kidney injury (AKI). Previous studies have shown that extracellular adenosine is a prominent tissue-protective cue elicited during ischemia, including signaling events through the adenosine receptor 2b (Adora2b). To investigate the functional role of Adora2b signaling in cytokine-mediated inflammatory pathways, we screened wild-type and Adora2b-deficient mice undergoing renal ischemia for expression of a range of inflammatory cytokines. These studies demonstrated a selective and robust increase of TNF-α levels in Adora2b-deficient mice following renal ischemia and reperfusion. Based on these findings, we next sought to understand the contribution of TNF-α on ischemic AKI through a combination of loss- and gain-of-function studies. Loss of TNF-α, through either Ab blockade or study of Tnf-α-deficient animals, resulted in significantly attenuated tissue injury and improved kidney function following renal ischemia. Conversely, transgenic mice with overexpression of TNF-α had significantly pronounced susceptibility to AKI. Furthermore, neutrophil depletion or reconstitution of Adora2b-/- mice with Tnf-α-deficient neutrophils rescued their phenotype. In total, these data demonstrate a critical role of adenosine signaling in constraining neutrophil-dependent production of TNF-α and implicate therapies targeting TNF-α in the treatment of ischemic AKI.
UR - http://www.scopus.com/inward/record.url?scp=84867908845&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.1201651
DO - 10.4049/jimmunol.1201651
M3 - Article
C2 - 23028059
AN - SCOPUS:84867908845
SN - 0022-1767
VL - 189
SP - 4566
EP - 4573
JO - Journal of Immunology
JF - Journal of Immunology
IS - 9
ER -