TY - JOUR
T1 - Adolescent development of cortical oscillations
T2 - Power, phase, and support of cognitive maturation
AU - Marek, Scott
AU - Tervo-Clemmens, Brenden
AU - Klein, Natalie
AU - Foran, William
AU - Ghuman, Avniel Singh
AU - Luna, Beatriz
N1 - Publisher Copyright:
© 2018 Marek et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/11
Y1 - 2018/11
N2 - During adolescence, the integration of specialized functional brain networks related to cognitive control continues to increase. Slow frequency oscillations (4-10 Hz) have been shown to support cognitive control processes, especially within prefrontal regions. However, it is unclear how neural oscillations contribute to functional brain network development and improvements in cognitive control during adolescence. To bridge this gap, we employed magnetoencephalography (MEG) to explore changes in oscillatory power and phase coupling across cortical networks in a sample of 68 adolescents and young adults. We found a redistribution of power from lower to higher frequencies throughout adolescence, such that delta band (1-3 Hz) power decreased, whereas beta band power (14-16 and 22-26 Hz) increased. Delta band power decreased with age most strongly in association networks within the frontal lobe and operculum. Conversely, beta band power increased throughout development, most strongly in processing networks and the posterior cingulate cortex, a hub of the default mode (DM) network. In terms of phase, theta band (5-9 Hz) phase-locking robustly decreased with development, following an anterior-to-posterior gradient, with the greatest decoupling occurring between association networks. Additionally, decreased slow frequency phase-locking between frontolimbic regions was related to decreased impulsivity with age. Thus, greater decoupling of slow frequency oscillations may afford functional networks greater flexibility during the resting state to instantiate control when required.
AB - During adolescence, the integration of specialized functional brain networks related to cognitive control continues to increase. Slow frequency oscillations (4-10 Hz) have been shown to support cognitive control processes, especially within prefrontal regions. However, it is unclear how neural oscillations contribute to functional brain network development and improvements in cognitive control during adolescence. To bridge this gap, we employed magnetoencephalography (MEG) to explore changes in oscillatory power and phase coupling across cortical networks in a sample of 68 adolescents and young adults. We found a redistribution of power from lower to higher frequencies throughout adolescence, such that delta band (1-3 Hz) power decreased, whereas beta band power (14-16 and 22-26 Hz) increased. Delta band power decreased with age most strongly in association networks within the frontal lobe and operculum. Conversely, beta band power increased throughout development, most strongly in processing networks and the posterior cingulate cortex, a hub of the default mode (DM) network. In terms of phase, theta band (5-9 Hz) phase-locking robustly decreased with development, following an anterior-to-posterior gradient, with the greatest decoupling occurring between association networks. Additionally, decreased slow frequency phase-locking between frontolimbic regions was related to decreased impulsivity with age. Thus, greater decoupling of slow frequency oscillations may afford functional networks greater flexibility during the resting state to instantiate control when required.
UR - http://www.scopus.com/inward/record.url?scp=85058593359&partnerID=8YFLogxK
U2 - 10.1371/JOURNAL.PBIO.2004188
DO - 10.1371/JOURNAL.PBIO.2004188
M3 - Article
C2 - 30500809
AN - SCOPUS:85058593359
SN - 1544-9173
VL - 16
JO - PLoS biology
JF - PLoS biology
IS - 11
M1 - e2004188
ER -