Adolescent Decision-Making Under Risk: Neural Correlates and Sex Differences

Ozlem Korucuoglu, Michael P. Harms, James T. Kennedy, Semyon Golosheykin, Serguei V. Astafiev, Deanna M. Barch, Andrey P. Anokhin

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

An increased propensity for risk taking is a hallmark of adolescent behavior with significant health and social consequences. Here, we elucidated cortical and subcortical regions associated with risky and risk-averse decisions and outcome evaluation using the Balloon Analog Risk Task in a large sample of adolescents (n = 256, 56% female, age 14 ± 0.6), including the level of risk as a parametric modulator. We also identified sex differences in neural activity. Risky decisions engaged regions that are parts of the salience, dorsal attention, and frontoparietal networks, but only the insula was sensitive to increasing risks in parametric analyses. During risk-averse decisions, the same networks covaried with parametric levels of risk. The dorsal striatum was engaged by both risky and risk-averse decisions, but was not sensitive to escalating risk. Negative-outcome processing showed greater activations than positive-outcome processing. Insula, lateral orbitofrontal cortex, middle, rostral, and superior frontal areas, rostral and caudal anterior cingulate cortex were activated only by negative outcomes, with a subset of regions associated with negative outcomes showing greater activation in females. Taken together, these results suggest that safe decisions are predicted by more accurate neural representation of increasing risk levels, whereas reward-related processes play a relatively minor role.

Original languageEnglish
Pages (from-to)2690-2706
Number of pages17
JournalCerebral cortex (New York, N.Y. : 1991)
Volume30
Issue number4
DOIs
StatePublished - Apr 14 2020

Keywords

  • BART
  • effect size
  • fMRI
  • insula
  • parametric design

Fingerprint Dive into the research topics of 'Adolescent Decision-Making Under Risk: Neural Correlates and Sex Differences'. Together they form a unique fingerprint.

  • Cite this