Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs

Hongzhen Hu, Jinbin Tian, Yingmin Zhu, Chunbo Wang, Rui Xiao, Jeffrey M. Herz, Jackie D. Wood, Michael X. Zhu

Research output: Contribution to journalArticlepeer-review

99 Scopus citations

Abstract

Transient receptor potential Al (TRPA1) forms nonselective cation channels implicated in acute inflammatory pain and nociception. The mechanism of ligand activation of TRPA1 may involve either covalent modification of cysteine residues or conventional reversible ligand-receptor interactions. For certain electrophilic prostaglandins, covalent modification has been considered as the main mechanism involved in their stimulatory effect on TRPA1. Because some nonsteroidal anti-inflammatory drugs (NSAIDs) are structural analogs of prostaglandins, we examined several nonelectrophilic NSAIDs on TRPA1 activation using electrophysiological techniques and intracellular Ca2+ measurements and found that a selected group of NSAIDs can act as TRPA1 agonists. Extracellularly applied flufenamic, niflumic, and mefenamic acid, as well as flurbiprofen, ketoprofen, diclofenac, and indomethacin, rapidly activated rat TRPA1 expressed in Xenopus oocytes and human TRPA1 endogenously expressed in WI-38 fibroblasts. Similarly, the NSAID ligands activated human TRPA1 inducibly expressed in HEK293 cells, but the responses were absent in uninduced and parental HEK293 cells. The response to fenamate agonists was blocked by TRPA1 antagonists, AP-18, HC-030031, and ruthenium red. At subsaturating concentrations, the fenamate NSAIDs also potentiate the activation of TRPA1 by allyl isothiocyanate, cinnamaldehyde, and cold, demonstrating positive synergistic interactions with other well-characterized TRPA1 activators. Importantly, among several thermosensitive TRP channels, the stimulatory effect is specific to TRPA1 because flufenamic acid inhibited TRPV1, TRPV3, and TRPM8. We conclude that fenamate NSAIDs are a novel class of potent and reversible direct agonists of TRPA1. This selective group of TRPA1-stimulating NSAIDs should provide a structural basis for developing novel ligands that noncovalently interact with TRPA1 channels.

Original languageEnglish
Pages (from-to)579-592
Number of pages14
JournalPflugers Archiv European Journal of Physiology
Volume459
Issue number4
DOIs
StatePublished - Mar 2010

Keywords

  • Cancer
  • NSAID
  • Pain
  • Sensory neurons
  • TRP channel

Fingerprint

Dive into the research topics of 'Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs'. Together they form a unique fingerprint.

Cite this