Activation and block of recombinant GABA(A) receptors by pentobarbitone: A single-channel study

Gustav Akk, Joe Henry Steinbach

Research output: Contribution to journalArticlepeer-review

47 Scopus citations


1. Recombinant GABA(A) receptors (α1β2γ2L) were transiently expressed in HEK 293 cells. We have investigated activation and block of these receptors by pentobarbitone (PB) using cell-attached single-channel patch clamp. 2. Clusters of single-channel activity elicited by 500 μM PB were analysed to estimate rate constants for agonist binding and channel gating. The minimal model able to describe the kinetic data involved two sequential binding steps, followed by channel opening. The estimated channel opening rate constant is ~ 1500 s-1, and the estimated equilibrium dissociation constants for the binding steps involved in activation are ~ 2 mM. 3. Our results show a dose-dependent block of receptors at millimolar concentrations of PB that results in reduced open interval durations. The reduction in mean open time is linearly proportional to PB concentration, indicating that block can be produced by binding of a single PB molecule. 4. Addition of millimolar concentrations of PB in the presence of GABA also produces a reduction of open channel lifetime in addition to a progressive increase in the closed interval durations within a cluster. The data suggest that the receptor contains two or more blocking sites while occupancy of only one of the sites is sufficient for channel block. 5. Neither the blocking rate constant nor return rate from the blocked state(s) is affected by pH (ionization status of the PB molecule) demonstrating that both neutral and anionic forms of PB cause channel block.

Original languageEnglish
Pages (from-to)249-258
Number of pages10
JournalBritish Journal of Pharmacology
Issue number2
StatePublished - 2000


  • GABA(A) receptors
  • Kinetic analysis
  • Pentobarbitone
  • Single channel


Dive into the research topics of 'Activation and block of recombinant GABA(A) receptors by pentobarbitone: A single-channel study'. Together they form a unique fingerprint.

Cite this