TY - GEN
T1 - Accurate proton stopping power images reconstructed using joint statistical dual energy CT
T2 - Medical Imaging 2020: Physics of Medical Imaging
AU - Medrano, Maria
AU - Liu, Ruirui
AU - Webb, Tyler
AU - Zhao, Tianyu
AU - Williamson, Jeffrey
AU - Whiting, Bruce
AU - Politte, David G.
AU - Porras-Chaverri, Mariela
AU - O’Sullivan, Joseph A.
N1 - Funding Information:
This study is supported by NIH R01 CA 212638.
Publisher Copyright:
© 2020 SPIE
PY - 2020
Y1 - 2020
N2 - Proton radiotherapy has the potential to provide clinically effective treatment and highly conformal dose delivery when the rapid dose falloff at the end of its proton-beam range is correctly aligned to the distal margin of the clinical target volume. However, in current clinical practice an additional 2-3.5% safety margin must be added to the proton range to account for uncertainties in the estimation of proton-beam range when using stopping-power ratios (SPRs) derived from single-energy CT scans. Several approaches have been proposed to estimate stopping power by using dual-energy CT (DECT) and have been shown through theoretical analysis to outperform single-energy CT (SECT) under the presence of tissue composition and density variations. Our lab previously proposed a joint statistical image reconstruction (JSIR) method built on a basis-vector model (BVM) tissue parameterization for SPR estimation, which was shown to perform comparatively better than other DECT image- and sinogram-domain decomposition approaches on simulated as well as experimental data. This comparison, however, assumed theoretical SPR values calculated from the samples’ known compositions and densities as ground truth and used the mean excitation energy and effective electron density from ICRU reports along with a simplified version of the Bethe-Bloch equation to determine SPR reference values. Furthermore, CT scans were acquired with an assumed ideal point source at a narrow beam collimation; thus, the signal formation assumed by our JSIR process neglected scatter and off-focal radiation. In this paper, we verify the accuracy of our method by comparing the SPR values derived from JSIR-BVM to direct measurements of relative SPR, as well as present a preliminary study on the impact of fan-beam scatter radiation on JSIR-BVM SPR prediction accuracy.
AB - Proton radiotherapy has the potential to provide clinically effective treatment and highly conformal dose delivery when the rapid dose falloff at the end of its proton-beam range is correctly aligned to the distal margin of the clinical target volume. However, in current clinical practice an additional 2-3.5% safety margin must be added to the proton range to account for uncertainties in the estimation of proton-beam range when using stopping-power ratios (SPRs) derived from single-energy CT scans. Several approaches have been proposed to estimate stopping power by using dual-energy CT (DECT) and have been shown through theoretical analysis to outperform single-energy CT (SECT) under the presence of tissue composition and density variations. Our lab previously proposed a joint statistical image reconstruction (JSIR) method built on a basis-vector model (BVM) tissue parameterization for SPR estimation, which was shown to perform comparatively better than other DECT image- and sinogram-domain decomposition approaches on simulated as well as experimental data. This comparison, however, assumed theoretical SPR values calculated from the samples’ known compositions and densities as ground truth and used the mean excitation energy and effective electron density from ICRU reports along with a simplified version of the Bethe-Bloch equation to determine SPR reference values. Furthermore, CT scans were acquired with an assumed ideal point source at a narrow beam collimation; thus, the signal formation assumed by our JSIR process neglected scatter and off-focal radiation. In this paper, we verify the accuracy of our method by comparing the SPR values derived from JSIR-BVM to direct measurements of relative SPR, as well as present a preliminary study on the impact of fan-beam scatter radiation on JSIR-BVM SPR prediction accuracy.
KW - Alternating minimization
KW - Collimation
KW - Dual-energy computed tomography
KW - Proton stopping power
KW - Proton therapy
KW - Scatter
KW - Statistical image reconstruction
UR - http://www.scopus.com/inward/record.url?scp=85086736721&partnerID=8YFLogxK
U2 - 10.1117/12.2549788
DO - 10.1117/12.2549788
M3 - Conference contribution
AN - SCOPUS:85086736721
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2020
A2 - Chen, Guang-Hong
A2 - Bosmans, Hilde
PB - SPIE
Y2 - 16 February 2020 through 19 February 2020
ER -