TY - JOUR
T1 - Accelerated aging of the putamen in patients with major depressive disorder
AU - Sacchet, Matthew D.
AU - Camacho, M. Catalina
AU - Livermore, Emily E.
AU - Thomas, Ewart A.C.
AU - Gotlib, Ian H.
N1 - Publisher Copyright:
© 2017 Joule Inc. or its licensors.
PY - 2017/5
Y1 - 2017/5
N2 - Background: Growing evidence indicates that major depressive disorder (MDD) is characterized by accelerated biological aging, including greater age-related changes in physiological functioning. The disorder is also associated with abnormal neural reward circuitry, particularly in the basal ganglia (BG). Here we assessed age-related changes in BG volume in both patients with MDD and healthy control participants. Methods: We obtained whole-brain T1-weighted images from patients with MDD and healthy controls. We estimated grey matter volumes of the BG, including the nucleus accumbens, caudate, pallidum and putamen. Volumes were assessed using multivariate analysis of covariance (MANCOVA) with age as a covariate, followed by appropriate post hoc tests. Results: We included 232 individuals (116 patients with MDD) in our analysis. The MANCOVA yielded a significant group × age interaction (p = 0.043). Analyses for each region yielded a significant group × age interaction in the putamen (univariate test, p = 0.005; permutation test, p = 0.004); this effect was not significant in the other regions. The negative association between age and putamen volume was twice as large in the MDD than in the control group (–35.2 v. –16.7 mm3/yr), indicating greater age-related volumetric decreases in the putamen in individuals with MDD than in controls. Limitations: These findings are cross-sectional; future studies should assess the longitudinal impact of accelerated aging on anhedonia and neural indices of reward processing. Conclusion: Our results indicate that putamen aging is accelerated in patients with MDD. Thus, the putamen may uniquely contribute to the adverse long-term effects of depressive psychopathology and may be a useful target for the treatment of MDD across the lifespan.
AB - Background: Growing evidence indicates that major depressive disorder (MDD) is characterized by accelerated biological aging, including greater age-related changes in physiological functioning. The disorder is also associated with abnormal neural reward circuitry, particularly in the basal ganglia (BG). Here we assessed age-related changes in BG volume in both patients with MDD and healthy control participants. Methods: We obtained whole-brain T1-weighted images from patients with MDD and healthy controls. We estimated grey matter volumes of the BG, including the nucleus accumbens, caudate, pallidum and putamen. Volumes were assessed using multivariate analysis of covariance (MANCOVA) with age as a covariate, followed by appropriate post hoc tests. Results: We included 232 individuals (116 patients with MDD) in our analysis. The MANCOVA yielded a significant group × age interaction (p = 0.043). Analyses for each region yielded a significant group × age interaction in the putamen (univariate test, p = 0.005; permutation test, p = 0.004); this effect was not significant in the other regions. The negative association between age and putamen volume was twice as large in the MDD than in the control group (–35.2 v. –16.7 mm3/yr), indicating greater age-related volumetric decreases in the putamen in individuals with MDD than in controls. Limitations: These findings are cross-sectional; future studies should assess the longitudinal impact of accelerated aging on anhedonia and neural indices of reward processing. Conclusion: Our results indicate that putamen aging is accelerated in patients with MDD. Thus, the putamen may uniquely contribute to the adverse long-term effects of depressive psychopathology and may be a useful target for the treatment of MDD across the lifespan.
UR - http://www.scopus.com/inward/record.url?scp=85018245166&partnerID=8YFLogxK
U2 - 10.1503/jpn.160010
DO - 10.1503/jpn.160010
M3 - Article
C2 - 27749245
AN - SCOPUS:85018245166
SN - 1180-4882
VL - 42
SP - 164
EP - 171
JO - Journal of Psychiatry and Neuroscience
JF - Journal of Psychiatry and Neuroscience
IS - 3
ER -