Abnormal regulatory interactions of I148T-CFTR and the epithelial Na + channel in Xenopus oocytes

Laurence Suaud, Wusheng Yan, Ronald C. Rubenstein

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


The mechanisms underlying regulatory interactions of the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) in Xenopus oocytes are controversial. CFTR's first nucleotide binding domain (NBD-1) may be important in these interactions, because mutations within NBD-1 impair these functional interactions. We hypothesized that an abnormal CFTR containing a non-NBD-1 mutation and able to transport chloride would retain regulatory interactions with murine ENaC (mENaC). We tested this hypothesis for I148T-CFTR, where the mutation is located in CFTR's first intracellular loop. I148T-CFTR has been associated with a severe CF phenotype, perhaps because of defects in its regulation of bicarbonate transport, but it transports chloride similarly to wild-type CFTR in model systems (Choi JY, Muallem D, Kiselyov K, Lee MG, Thomas PJ, Muallem S. Nature 410: 94-97, 2001). cRNAs encoding αβγ-mENaC and I148T-CFTR were injected separately or together into Xenopus oocytes. mENaC and CFTR functional expression were assessed by two-electrode voltage clamp. mENaC whole oocyte expression was determined by immunoblotting, and surface expression was quantitated by surface biotinylation. Injection of I148T-CFTR cRNA alone yielded high levels of CFTR functional expression. In coinjected oocytes, mENaC functional and surface expression was not altered by activation of I148T-CFTR with forskolin/ IBMX. Furthermore, the CFTR potentiator genistein both enhanced functional expression of I148T-CFTR and restored regulation of mENaC surface expression by activated I148T-CFTR. These data suggest that the ability to transport chloride is not a critical determinant of regulation of mENaC by activated CFTR in Xenopus oocytes and provide further evidence that I148T-CFTR is dysfunctional despite maintaining the ability to transport chloride.

Original languageEnglish
Pages (from-to)C603-C611
JournalAmerican Journal of Physiology - Cell Physiology
Issue number1
StatePublished - Jan 2007


  • Cystic fibrosis transmembrane conductance regulator
  • Genistein


Dive into the research topics of 'Abnormal regulatory interactions of I148T-CFTR and the epithelial Na + channel in Xenopus oocytes'. Together they form a unique fingerprint.

Cite this