TY - JOUR
T1 - Ab initio models of amorphous InN
AU - Cai, B.
AU - Drabold, D. A.
PY - 2009/5/1
Y1 - 2009/5/1
N2 - In this paper, we present the first structural model of amorphous indium nitride obtained from first-principles simulation. We created a small 64-atom model by quenching from the melt and analyzed a chemically ordered 250-atom model of Mousseau and Barkema. We find that both N and In atoms tend to be fourfold. Upon relaxation, we find no homopolar bonds in the small cell and only one in the 250-atom cell. The topology of the models is analyzed with pair-correlation functions, bond angle distributions, and ring statistics. The vibrational and electronic properties are also obtained. We found that density-functional methods in the local-density approximation predict a very small gap for amorphous InN, similar to the case for crystalline InN.
AB - In this paper, we present the first structural model of amorphous indium nitride obtained from first-principles simulation. We created a small 64-atom model by quenching from the melt and analyzed a chemically ordered 250-atom model of Mousseau and Barkema. We find that both N and In atoms tend to be fourfold. Upon relaxation, we find no homopolar bonds in the small cell and only one in the 250-atom cell. The topology of the models is analyzed with pair-correlation functions, bond angle distributions, and ring statistics. The vibrational and electronic properties are also obtained. We found that density-functional methods in the local-density approximation predict a very small gap for amorphous InN, similar to the case for crystalline InN.
UR - http://www.scopus.com/inward/record.url?scp=66849142207&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.79.195204
DO - 10.1103/PhysRevB.79.195204
M3 - Article
AN - SCOPUS:66849142207
SN - 1098-0121
VL - 79
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 19
M1 - 195204
ER -