A type I IFN-dependent DNA damage response regulates the genetic program and inflammasome activation in macrophages

Abigail J. Morales, Javier A. Carrero, Putzer J. Hung, Anthony T. Tubbs, Jared M. Andrews, Brian T. Edelson, Boris Calderon, Cynthia L. Innes, Richard S. Paules, Jacqueline E. Payton, Barry P. Sleckman

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Macrophages produce genotoxic agents, such as reactive oxygen and nitrogen species, that kill invading pathogens. Here we show that these agents activate the DNA damage response (DDR) kinases ATM and DNA-PKcs through the generation of double stranded breaks (DSBs) in murine macrophage genomic DNA. In contrast to other cell types, initiation of this DDR depends on signaling from the type I interferon receptor. Once activated, ATM and DNA-PKcs regulate a genetic program with diverse immune functions and promote inflammasome activation and the production of IL-1β and IL-18. Indeed, following infection with Listeria monocytogenes, DNA-PKcs-deficient murine macrophages produce reduced levels of IL-18 and are unable to optimally stimulate IFN-γ production by NK cells. Thus, genomic DNA DSBs act as signaling intermediates in murine macrophages, regulating innate immune responses through the initiation of a type I IFN-dependent DDR.

Original languageEnglish
Article numbere24655
JournaleLife
Volume6
DOIs
StatePublished - Mar 31 2017

Fingerprint

Dive into the research topics of 'A type I IFN-dependent DNA damage response regulates the genetic program and inflammasome activation in macrophages'. Together they form a unique fingerprint.

Cite this