TY - JOUR
T1 - A TRPC5-regulated calcium signaling pathway controls dendrite patterning in the mammalian brain
AU - Puram, Sidharth V.
AU - Riccio, Antonio
AU - Koirala, Samir
AU - Ikeuchi, Yoshiho
AU - Kim, Albert H.
AU - Corfas, Gabriel
AU - Bonni, Azad
PY - 2011/12/15
Y1 - 2011/12/15
N2 - Department of Neurosurgery, Brigham and Women's Hospital, Children's Hospital, Boston, Massachusetts 02115, USA Transient receptor potential (TRP) channels have been implicated as sensors of diverse stimuli in mature neurons. However, developmental roles for TRP channels in the establishment of neuronal connectivity remain largely unexplored. Here, we identify an essential function for TRPC5, a member of the canonical TRP subfamily, in the regulation of dendrite patterning in the mammalian brain. Strikingly, TRPC5 knockout mice harbor long, highly branched granule neuron dendrites with impaired dendritic claw differentiation in the cerebellar cortex. In vivo RNAi analyses suggest that TRPC5 regulates dendrite morphogenesis in the cerebellar cortex in a cellautonomous manner. Correlating with impaired dendrite patterning in the cerebellar cortex, behavioral analyses reveal that TRPC5 knockout mice have deficits in gait and motor coordination. Finally, we uncover the molecular basis of TRPC5's function in dendrite patterning. We identify the major protein kinase calcium/calmodulindependent kinase II b (CaMKIIb) as a critical effector of TRPC5 function in neurons. Remarkably, TRPC5 forms a complex specifically with CaMKIIb, but not the closely related kinase CaMKIIa, and thereby induces the CaMKIIb-dependent phosphorylation of the ubiquitin ligase Cdc20-APC at the centrosome. Accordingly, centrosomal CaMKIIb signaling mediates the ability of TRPC5 to regulate dendrite morphogenesis in neurons. Our findings define a novel function for TRPC5 that couples calcium signaling to a ubiquitin ligase pathway at the centrosome and thereby orchestrates dendrite patterning and connectivity in the brain.
AB - Department of Neurosurgery, Brigham and Women's Hospital, Children's Hospital, Boston, Massachusetts 02115, USA Transient receptor potential (TRP) channels have been implicated as sensors of diverse stimuli in mature neurons. However, developmental roles for TRP channels in the establishment of neuronal connectivity remain largely unexplored. Here, we identify an essential function for TRPC5, a member of the canonical TRP subfamily, in the regulation of dendrite patterning in the mammalian brain. Strikingly, TRPC5 knockout mice harbor long, highly branched granule neuron dendrites with impaired dendritic claw differentiation in the cerebellar cortex. In vivo RNAi analyses suggest that TRPC5 regulates dendrite morphogenesis in the cerebellar cortex in a cellautonomous manner. Correlating with impaired dendrite patterning in the cerebellar cortex, behavioral analyses reveal that TRPC5 knockout mice have deficits in gait and motor coordination. Finally, we uncover the molecular basis of TRPC5's function in dendrite patterning. We identify the major protein kinase calcium/calmodulindependent kinase II b (CaMKIIb) as a critical effector of TRPC5 function in neurons. Remarkably, TRPC5 forms a complex specifically with CaMKIIb, but not the closely related kinase CaMKIIa, and thereby induces the CaMKIIb-dependent phosphorylation of the ubiquitin ligase Cdc20-APC at the centrosome. Accordingly, centrosomal CaMKIIb signaling mediates the ability of TRPC5 to regulate dendrite morphogenesis in neurons. Our findings define a novel function for TRPC5 that couples calcium signaling to a ubiquitin ligase pathway at the centrosome and thereby orchestrates dendrite patterning and connectivity in the brain.
KW - Cerebellar cortex
KW - Dendrites
KW - Protein kinase signaling
UR - http://www.scopus.com/inward/record.url?scp=84155197392&partnerID=8YFLogxK
U2 - 10.1101/gad.174060.111
DO - 10.1101/gad.174060.111
M3 - Article
C2 - 22135323
AN - SCOPUS:84155197392
SN - 0890-9369
VL - 25
SP - 2659
EP - 2673
JO - Genes and Development
JF - Genes and Development
IS - 24
ER -