A toolbox to characterize human induced pluripotent stem cell-derived kidney cell types and organoids

Jessica M. Vanslambrouck, Sean B. Wilson, Ker Sin Tan, Joanne Y.C. Soo, Michelle Scurr, H. Siebe Spijker, Lakshi T. Starks, Amber Neilson, Xiaoxia Cui, Sanjay Jain, Melissa Helen Little, Sara E. Howden

Research output: Contribution to journalArticlepeer-review

37 Scopus citations


Background The generation of reporter lines for cell identity, lineage, and physiologic state has provided a powerful tool in advancing the dissection of mouse kidney morphogenesis at a molecular level. Although use of this approach is not an option for studying human development in vivo, its application in human induced pluripotent stem cells (iPSCs) is now feasible. MethodsWe used CRISPR/Cas9 gene editing to generate ten fluorescence reporter iPSC lines designed to identify nephron progenitors, podocytes, proximal and distal nephron, and ureteric epithelium. Directed differentiation to kidney organoids was performed according to published protocols. Using immunofluorescence and live confocal microscopy, flow cytometry, and cell sorting techniques, we investigated organoid patterning and reporter expression characteristics. Results Each iPSC reporter line formed well patterned kidney organoids. All reporter lines showed congruence of endogenous gene and protein expression, enabling isolation and characterization of kidney cell types of interest. We also demonstrated successful application of reporter lines for time-lapse imaging and mouse transplantation experiments. Conclusions We generated, validated, and applied a suite of fluorescence iPSC reporter lines for the study of morphogenesis within human kidney organoids. This fluorescent iPSC reporter toolbox enables the visualization and isolation of key populations in forming kidney organoids, facilitating a range of applications, including cellular isolation, time-lapse imaging, protocol optimization, and lineage-tracing approaches. These tools offer promise for enhancing our understanding of this model system and its correspondence with human kidney morphogenesis.

Original languageEnglish
Pages (from-to)1811-1823
Number of pages13
JournalJournal of the American Society of Nephrology
Issue number10
StatePublished - 2019


Dive into the research topics of 'A toolbox to characterize human induced pluripotent stem cell-derived kidney cell types and organoids'. Together they form a unique fingerprint.

Cite this