A simulation study for the design of a prototype insert for whole-body PET scanners

Martin Janecek, Heyu Wu, Yuan Chuan Tai

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

We are developing an insert device that will improve image resolution within a smaller field-of-view for clinical whole-body PET scanners. We modified SimSET (Simulation System for Emission Tomography) to simulate the insert and a PET scanner. The system consists of two detector rings. The inner ring represents an insert (r = 153 mm) with high-resolution detectors using 10 mm thick LSO. The outer ring represents a PET scanner (R = 413 mm) with 25 mm thick LSO. Events were binned into three sets of sinograms assuming a 2.4 and 6.75 mm crystal-pitch for the insert and the PET scanner, respectively. The detectors in the insert are modeled as 1, 2, or 4 layers with different offset configurations to evaluate the corresponding system resolution with the depth-of-interaction (DOI) effect. Results show that image resolution at 1 cm radial offset is improved from 5.6 mm full-width-at-half-maximum (FWHM) of the original PET scanner to 2.0 mm with the insert At 12 cm offset, the resolution of the original system is 5.9 and 5.5 mm for radial and tangential directions, respectively. With the insert, the radial resolution is 5.0 mm FWHM for a single-layer detector design, but improves to 2.7 and 2.2 mm for 2- and 4-layer DOI detectors, respectively. Different offsets for multi-layer detectors have negligible effect on resolution. Sensitivity of the device is, assuming the insert has a 2 cm axial extend, estimated to be 3.3%, including coincidence events from the insert-alone and insert-to-scanner sinograms. In contrast, if the insert is used as a stand-alone microPET scanner, its sensitivity is 13%.

Original languageEnglish
Article number1645008
Pages (from-to)1143-1149
Number of pages7
JournalIEEE Transactions on Nuclear Science
Volume53
Issue number3
DOIs
StatePublished - Jun 2006

Keywords

  • Depth of interaction (DOI)
  • Head and neck imaging
  • High resolution imaging
  • Monte Carlo Emulations
  • Pseudo pinhole positron emission tomography (PET)

Fingerprint

Dive into the research topics of 'A simulation study for the design of a prototype insert for whole-body PET scanners'. Together they form a unique fingerprint.

Cite this