TY - JOUR
T1 - A roadmap to cysteine specific labeling of membrane proteins for single-molecule photobleaching studies
AU - Ernst, Melanie
AU - Mahoney-Kruszka, Robyn
AU - Zelt, Nathan B.
AU - Robertson, Janice L.
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2025/2
Y1 - 2025/2
N2 - Single-molecule photobleaching analysis is a useful approach for quantifying reactive membrane protein oligomerization in membranes. It provides a binary readout of a fluorophore attached to a protein subunit at dilute conditions. However, quantification of protein stoichiometry from this data requires information about the subunit labeling yields and whether there is non-specific background labeling. Any increases in subunit-specific labeling improves the ability to determine oligomeric states with confidence. A common strategy for site-specific labeling is by conjugation of a fluorophore bearing a thiol-reactive maleimide group to a substituted cysteine. Yet, cysteine reactivity can be difficult to predict as it depends on many factors such as solvent accessibility and electrostatics from the surrounding protein structure. Here we report a general methodology for screening potential cysteine labeling sites on purified membrane proteins. We present the results of two example systems for which the dimerization reactions in membranes have been characterized: (1) the CLC-ec1 Cl-/H+ antiporter, an Escherichia coli homologue of voltage-gated chloride ion channels in humans and (2) a mutant form of a member of the family of fluoride channels Fluc from Bordetella pertussis (Fluc-Bpe-N43S). To demonstrate how we identify such sites, we first discuss considerations of residue positions hypothesized to be suitable and then describe the specific steps to rigorously assess site-specific labeling while maintaining functional activity and robust single-molecule fluorescence signals. We find that our initial, well rationalized choices are not strong predictors of success, as rigorous testing of the labeling sites shows that only ≈ 30 % of sites end up being useful for single-molecule photobleaching studies.
AB - Single-molecule photobleaching analysis is a useful approach for quantifying reactive membrane protein oligomerization in membranes. It provides a binary readout of a fluorophore attached to a protein subunit at dilute conditions. However, quantification of protein stoichiometry from this data requires information about the subunit labeling yields and whether there is non-specific background labeling. Any increases in subunit-specific labeling improves the ability to determine oligomeric states with confidence. A common strategy for site-specific labeling is by conjugation of a fluorophore bearing a thiol-reactive maleimide group to a substituted cysteine. Yet, cysteine reactivity can be difficult to predict as it depends on many factors such as solvent accessibility and electrostatics from the surrounding protein structure. Here we report a general methodology for screening potential cysteine labeling sites on purified membrane proteins. We present the results of two example systems for which the dimerization reactions in membranes have been characterized: (1) the CLC-ec1 Cl-/H+ antiporter, an Escherichia coli homologue of voltage-gated chloride ion channels in humans and (2) a mutant form of a member of the family of fluoride channels Fluc from Bordetella pertussis (Fluc-Bpe-N43S). To demonstrate how we identify such sites, we first discuss considerations of residue positions hypothesized to be suitable and then describe the specific steps to rigorously assess site-specific labeling while maintaining functional activity and robust single-molecule fluorescence signals. We find that our initial, well rationalized choices are not strong predictors of success, as rigorous testing of the labeling sites shows that only ≈ 30 % of sites end up being useful for single-molecule photobleaching studies.
KW - Cy5
KW - Cysteine
KW - Ellman
KW - Maleimide
KW - Membrane protein
KW - Photobleaching
UR - http://www.scopus.com/inward/record.url?scp=85211021979&partnerID=8YFLogxK
U2 - 10.1016/j.ymeth.2024.10.013
DO - 10.1016/j.ymeth.2024.10.013
M3 - Article
C2 - 39586432
AN - SCOPUS:85211021979
SN - 1046-2023
VL - 234
SP - 21
EP - 35
JO - Methods
JF - Methods
ER -