Abstract
Aims Using 90% of final height as a benchmark, we sought to develop a quick, quantitative and reproducible method of estimating skeletal maturity based on topographical changes in the distal femoral physis. Patients and Methods Serial radiographs of the distal femoral physis three years prior to, during, and two years following the chronological age associated with 90% of final height were analyzed in 81 healthy children. The distance from the tip of the central peak of the distal femoral physis to a line drawn across the physis was normalized to the physeal width. Results A total of 389 radiographs of the distal femur with corresponding Greulich and Pyle bone ages and known chronological ages were measured. Children reached 90% of final height at a mean age of 11.3 years (SD 0.8) for girls and 13.2 years (SD 0.6) for boys. Linear regression analysis showed higher correlation coefficent in predicting the true age at 90% of final height using chronological age + gender + central peak value (R2 = 0.900) than chronological age + gender (R2 = 0.879) and Greulich and Pyle bone age + gender (R2 = 0.878). Conclusion Chronological age + gender + central peak value provides more accurate prediction of 90% of final height compared with chronological age + gender and Greulich and Pyle bone age + gender.
Original language | English |
---|---|
Pages (from-to) | 1106-1111 |
Number of pages | 6 |
Journal | Bone and Joint Journal |
Volume | 100B |
Issue number | 8 |
DOIs | |
State | Published - Aug 2018 |