4 Scopus citations

Abstract

This paper describes a system for the unsupervised learning of morphological suffixes and stems from word lists. The system is composed of a generative probability model and hill-climbing and directed search algorithms. By extracting and examining morphologically rich subsets of an input lexicon, the directed search identifies highly productive paradigms. The hill-climbing algorithm then further maximizes the probability of the hypothesis. Quantitative results are shown by measuring the accuracy of the morphological relations identified. Experiments in English and Polish, as well as comparisons with another recent unsupervised morphology learning algorithm demonstrate the effectiveness of this technique.

Original languageEnglish
Title of host publicationNIPS 2002
Subtitle of host publicationProceedings of the 15th International Conference on Neural Information Processing Systems
EditorsSuzanna Becker, Sebastian Thrun, Klaus Obermayer
PublisherMIT Press Journals
Pages1513-1520
Number of pages8
ISBN (Electronic)0262025507, 9780262025508
StatePublished - 2002
Event15th International Conference on Neural Information Processing Systems, NIPS 2002 - Vancouver, Canada
Duration: Dec 9 2002Dec 14 2002

Publication series

NameNIPS 2002: Proceedings of the 15th International Conference on Neural Information Processing Systems

Conference

Conference15th International Conference on Neural Information Processing Systems, NIPS 2002
Country/TerritoryCanada
CityVancouver
Period12/9/0212/14/02

Fingerprint

Dive into the research topics of 'A Probabilistic Model for Learning Concatenative Morphology'. Together they form a unique fingerprint.

Cite this