TY - JOUR
T1 - A predictive nomogram for individualized recurrence stratification of bladder cancer using multiparametric MRI and clinical risk factors
AU - Xu, Xiaopan
AU - Wang, Huanjun
AU - Du, Peng
AU - Zhang, Fan
AU - Li, Shurong
AU - Zhang, Zhongwei
AU - Yuan, Jing
AU - Liang, Zhengrong
AU - Zhang, Xi
AU - Guo, Yan
AU - Liu, Yang
AU - Lu, Hongbing
N1 - Publisher Copyright:
© 2019 International Society for Magnetic Resonance in Medicine
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Background: Preoperative prediction of bladder cancer (BCa) recurrence risk is critical for individualized clinical management of BCa patients. Purpose: To develop and validate a nomogram based on radiomics and clinical predictors for personalized prediction of the first 2 years (TFTY) recurrence risk. Study Type: Retrospective. Population: Preoperative MRI datasets of 71 BCa patients (34 recurrent) were collected, and divided into training (n = 50) and validation cohorts (n = 21). Field Strength/Sequence: 3.0T MRI/T2-weighted (T2W), multi-b-value diffusion-weighted (DW), and dynamic contrast-enhanced (DCE) sequences. Assessment: Radiomics features were extracted from the T2W, DW, apparent diffusion coefficient, and DCE images. A Rad_Score model was constructed using the support vector machine-based recursive feature elimination approach and a logistic regression model. Combined with the important clinical factors, including age, gender, grade, and muscle-invasive status (MIS) of the archived lesion, tumor size and number, surgery, and image signs like stalk and submucosal linear enhancement, a radiomics-clinical nomogram was developed, and its performance was evaluated in the training and the validation cohorts. The potential clinical usefulness was analyzed by the decision curve. Statistical Tests: Univariate and multivariate analyses were performed to explore the independent predictors for BCa recurrence prediction. Results: Of the 1872 features, the 32 with the highest area under the curve (AUC) of receiver operating characteristic were selected for the Rad_Score calculation. The nomogram developed by two independent predictors, MIS and Rad_Score, showed good performance in the training (accuracy 88%, AUC 0.915, P << 0.01) and validation cohorts (accuracy 80.95%, AUC 0.838, P = 0.009). The decision curve exhibited when the risk threshold was larger than 0.3, more benefit was observed by using the radiomics-clinical nomogram than using the radiomics or clinical model alone. Data Conclusion: The proposed radiomics-clinical nomogram has potential in the preoperative prediction of TFTY BCa recurrence. Level of Evidence: 3. Technical Efficacy: Stage 3. J. Magn. Reson. Imaging 2019;50:1893–1904.
AB - Background: Preoperative prediction of bladder cancer (BCa) recurrence risk is critical for individualized clinical management of BCa patients. Purpose: To develop and validate a nomogram based on radiomics and clinical predictors for personalized prediction of the first 2 years (TFTY) recurrence risk. Study Type: Retrospective. Population: Preoperative MRI datasets of 71 BCa patients (34 recurrent) were collected, and divided into training (n = 50) and validation cohorts (n = 21). Field Strength/Sequence: 3.0T MRI/T2-weighted (T2W), multi-b-value diffusion-weighted (DW), and dynamic contrast-enhanced (DCE) sequences. Assessment: Radiomics features were extracted from the T2W, DW, apparent diffusion coefficient, and DCE images. A Rad_Score model was constructed using the support vector machine-based recursive feature elimination approach and a logistic regression model. Combined with the important clinical factors, including age, gender, grade, and muscle-invasive status (MIS) of the archived lesion, tumor size and number, surgery, and image signs like stalk and submucosal linear enhancement, a radiomics-clinical nomogram was developed, and its performance was evaluated in the training and the validation cohorts. The potential clinical usefulness was analyzed by the decision curve. Statistical Tests: Univariate and multivariate analyses were performed to explore the independent predictors for BCa recurrence prediction. Results: Of the 1872 features, the 32 with the highest area under the curve (AUC) of receiver operating characteristic were selected for the Rad_Score calculation. The nomogram developed by two independent predictors, MIS and Rad_Score, showed good performance in the training (accuracy 88%, AUC 0.915, P << 0.01) and validation cohorts (accuracy 80.95%, AUC 0.838, P = 0.009). The decision curve exhibited when the risk threshold was larger than 0.3, more benefit was observed by using the radiomics-clinical nomogram than using the radiomics or clinical model alone. Data Conclusion: The proposed radiomics-clinical nomogram has potential in the preoperative prediction of TFTY BCa recurrence. Level of Evidence: 3. Technical Efficacy: Stage 3. J. Magn. Reson. Imaging 2019;50:1893–1904.
KW - SVM-RFE
KW - bladder cancer
KW - multiparametric MRI
KW - nomogram
KW - recurrence prediction
UR - http://www.scopus.com/inward/record.url?scp=85064495927&partnerID=8YFLogxK
U2 - 10.1002/jmri.26749
DO - 10.1002/jmri.26749
M3 - Article
C2 - 30980695
AN - SCOPUS:85064495927
SN - 1053-1807
VL - 50
SP - 1893
EP - 1904
JO - Journal of Magnetic Resonance Imaging
JF - Journal of Magnetic Resonance Imaging
IS - 6
ER -